Experiments in English↔Japanese Tree-to-String Machine Translation

Graham Neubig
Nara Institute of Science and Technology
10/20/2012
Introduction/Motivation
Translation Models

String

he visited the white house

Tree (Phrase Structure)

he visited the white house

Dependency

he visited the white house

String

彼はホワイトハウスを訪問した

Tree (Phrase Structure)

彼はホワイトハウスを訪問した

Dependency

彼はホワイトハウスを訪問した
Recent Usage in English ↔ Japanese

- Phrase-based translation [Koehn+ 03] is still popular

English: he visited the white house

Japanese: 彼はホワイトハウスを訪問した

- Moses used in 25 papers at NLP2012
- Also, hierarchical phrase-based translation [Chiang 07] ([Feng+ 11] is one of the few examples)
Recent Usage in English ↔ Japanese

- Pre-ordering [Xia+ 04] is another popular technique

Source Dependencies:

Pre-ordering:

Translation:

• First used for Japanese by [Komachi+ 06]?

• Used by Google [Xu+ 09], NTT [Isozaki+ 11], others [Nguyen+ 08, Neubig+ 12]
Recent Usage in English ↔ Japanese

- Dependency-to-dependency used by Kyoto U [Nakazawa+ 06] and rule based systems

\[
\text{he visited the white house} \quad \rightarrow \quad \text{彼はホワイトハウスを訪問した}
\]
Recent Usage in English ↔ Japanese

- String-to-tree models [Yamada+ 01] used by NTT in NTCIR task [Sudoh+ 11]
Recent Usage in English ↔ Japanese

(string) he visited the white house

(tree (phrase structure))

(dependency) he visited the white house

(H)PBMT

(Pre-ordering) S2T

(D2D) dependency

(string) 彼はホワイトハウスを訪問した

(tree (phrase structure))

(dependency) 彼はホワイトハウスを訪問した
What about Tree-driven Models?!

string
he visited the white house

tree (phrase structure)
```
S
  VP
    NP
      PRP VBD DT NNP NNP
```
he visited the white house

dependency
```
dobj
  nsubj
    det
      n
```
he visited the white house

string
彼はホワイトハウスを訪問した

tree (phrase structure)
```
S
  VP
    PP
      NP
        N P N N P N V
```
彼はホワイトハウスを訪問した

dependency
```
subj
dobj
  n
```
彼はホワイトハウスを訪問した
Tree-to-String Models [Liu+ 06]

Experiments in English-Japanese Tree-to-String Machine Translation
Dependency-to-String Models
[Quirk+ 05]
T2S/D2S vs Phrase Based

- **Better reordering** through use of syntactic structure
- **Very fast!** (especially compared to HPBMT)
- Better lexical choice because long-range context considered (especially D2S)
- Requires a parser
- Sensitive to parse errors
T2S/D2S vs Pre-ordering

• + T2S/D2S **jointly searches** for reordering and translation

• + T2S/D2S can easily handle **lexicalized reordering**

- Pre-ordering can find translation rules that **overlap constituent boundaries**

```
X が 高い
```

- X is high

```
X が 好き
```

- likes X
T2S vs. D2S

- T2S: Can handle de-lexicalized rules = more general?

- D2S: Dependent words are close → good for lexical choice?
Experiments and Summary
Question:

How well do modern statistical tree-to-string methods work for English ↔ Japanese translation?
Previous Research

• Three examples for $\text{En} \rightarrow \text{Ja}$?

 • [Quirk+ 06] Uses dependency treelet translation and shows improvement over PBMT

 • [Wu+ 10] Uses HPSG input and shows improvement over Joshua (HPBMT)

 • [DeNero+ 11] Shows forest-to-string does slightly better than syntactic pre-ordering in terms of BLEU

• One example for $\text{Ja} \rightarrow \text{En}$?

 • [Menezes+ 05] Uses dependency treelet translation, no direct comparison to other methods
Experimental Setup

- **System:** In-house forest-to-string decoder “travataar”
 - Forest-to-string translation [Mi+ 08] with tree transducers
 - Alignment GIZA++, extraction GHKM, tuning MERT
- **Data:** Kyoto Free Translation Task (KFTT [Neubig 11]), ~350k sentences of Wikipedia data for training
- **Baseline:** Moses PBMT, PBMT + Preordering [Neubig+ 12]
- **Evaluation:** BLEU, RIBES, Acceptability (0-5)
Tree-to-String Settings (Explained in Detail Later)

- **Language Analysis:**
 - **En Parser:** Stanford, Berkeley, *Egret* (Tree, Forest)
 - **Ja:** Juman+KNP, MeCab+Cabocha, *KyTea*+EDA

- **Composed Rules:** 1, 2, 3, 4

- **Non-terminals:** 1, 2, 3

- **Binarization:** Left, **Right**

- **Null Attachment:** Top, Exhaustive (1, 2)

- **Tuning:** BLEU, RIBES, *(BLEU+RIBES)/2*
Summary (En-Ja)

BLEU
- PBMT: 19.5
- PBMT+Pre: 21.0
- F2S: 19.5

RIBES
- PBMT: 64.0
- PBMT+Pre: 67.0
- F2S: 68.0

Acceptability
- PBMT: 2.6
- PBMT+Pre: 2.8
- F2S: 3.2
Experiments in English-Japanese Tree-to-String Machine Translation

Summary (Ja-En)

- BLEU:
 - PBMT: 16.6
 - PBMT+Pre: 17
 - T2S: 16.6

- RIBES:
 - PBMT: 64.5
 - PBMT+Pre: 65
 - T2S: 65.5

- Acceptability:
 - PBMT: 2.6
 - PBMT+Pre: 3.2
 - T2S: 3

The diagrams illustrate the performance metrics for each method (PBMT, PBMT+Pre, T2S) in the context of BLEU, RIBES, and acceptability.
En-Ja F2S vs. PBMT+Pre

Input:
Department of Sociology in Faculty of Letters opened.

PBMT+Pre:
開業 年 文学 部 社会 学科。

F2S:
文学 部 社会 学科 を 開設。

Properly interprets noun phrase + verb
En-Ja F2S vs. PBMT+Pre

Input:
Afterwards it was reconstructed but its influence declined.

PBMT+Pre:
その後衰退したが、その影響を受けて再建されたものである。

F2S:
その後再建されていてが、影響力は衰えた。

Properly reconstructs relationship between two verb phrases
Experiments in English-Japanese Tree-to-String Machine Translation

En-Ja F2S vs. PBMT+Pre

Input:
Introduction of KANSAI THRU PASS Miyako Card

PBMT+Pre:
スルッと kansai 都 カード の 導入

F2S:
伝来 スルッと KANSAI 都 カード

Parsing error:
(NP (NP Introduction) (PP of KANSAI THRU PASS) (NP Miyako) (NP Card))
Ja-En T2S vs. PBMT+Pre

Input:
史実 に は 直接 の 関係 は な い。

PBMT+Pre:
in the historical fact is not directly related to it.

T2S:
is not directly related to the historical facts.

Properly translates “に は … 関係 が” as “related to”
Ja-En T2S vs. PBMT+Pre

Input:
九条 道家 は 嫡男 ・ 九条 教実 に 先立 た れ 、 次男 ・ 二 条 良実 は 事実 上 の 勘当 状態 に あ っ た。

PBMT+Pre:
michiie kujo was his eldest son and heir, norizane kujo, and his second son, yoshizane nijo was disinherited.

T2S:
michiie kujo to his legitimate son kujo norizane died before him, and the second son, nijo yoshizane was virtually disowned.

Much better division between clauses
Ja-En T2S vs. PBMT+Pre

Input:
日本 語 日本 文学 科
1474 年 ~ 1478 年 - 山名 政 豊

PBMT+Pre:
the department of japanese language and literature
in 1474 to 1478 - masatoyo yamana

T2S:
japanese language and literature
masatoyo yamana 1474 shokoku-ji in -

Errors due to more restrictive rule extraction (first example),
parse errors (second example, “Yamana” is a single noun phrase)
Effect of Language Analysis
Question:

How much do the language analysis tools used effect translation?
Language Analysis (En-Ja):

- Which parser provides better translations?
- **Stanford Parser, Berkeley Parser, Egret** (a clone of the Berkeley parser that can output forests)
Language Analysis (Ja-En):

- 3 morphological/dependency analysis combinations

<table>
<thead>
<tr>
<th></th>
<th>Juman+KNP</th>
<th>MeCab+CaboCha</th>
<th>KyTea+EDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segmentation</td>
<td>Long</td>
<td>Medium</td>
<td>Short</td>
</tr>
<tr>
<td>OOV</td>
<td>Simple</td>
<td>Simple</td>
<td>Model</td>
</tr>
<tr>
<td>Parsing Unit</td>
<td>Bunsetsu</td>
<td>Bunsetsu</td>
<td>Word</td>
</tr>
<tr>
<td>Algorithm</td>
<td>CKY-Style</td>
<td>Cascaded Chunking</td>
<td>MST</td>
</tr>
</tbody>
</table>

- Use head rules to change dependency into CFG
 - For bunsetsu-based, last content word is head
 - Punctuation dependencies reversed
Language Analysis (Ja-En):

- PBMT
- PBMT+Pre
- Juman+KNP
- MeCab+CaboCha
- KyTea+EDA

BLEU

<table>
<thead>
<tr>
<th>Method</th>
<th>BLEU Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBMT</td>
<td>15</td>
</tr>
<tr>
<td>PBMT+Pre</td>
<td>17</td>
</tr>
<tr>
<td>Juman+KNP</td>
<td>12</td>
</tr>
<tr>
<td>MeCab+CaboCha</td>
<td>14</td>
</tr>
<tr>
<td>KyTea+EDA</td>
<td>16</td>
</tr>
</tbody>
</table>

RIBES

<table>
<thead>
<tr>
<th>Method</th>
<th>RIBES Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBMT</td>
<td>66</td>
</tr>
<tr>
<td>PBMT+Pre</td>
<td>63</td>
</tr>
<tr>
<td>Juman+KNP</td>
<td>58</td>
</tr>
<tr>
<td>MeCab+CaboCha</td>
<td>62</td>
</tr>
<tr>
<td>KyTea+EDA</td>
<td>66</td>
</tr>
</tbody>
</table>

Acceptability

<table>
<thead>
<tr>
<th>Method</th>
<th>Acceptability</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBMT</td>
<td>2.6</td>
</tr>
<tr>
<td>PBMT+Pre</td>
<td>2.8</td>
</tr>
<tr>
<td>Juman+KNP</td>
<td>2.4</td>
</tr>
<tr>
<td>MeCab+CaboCha</td>
<td>2.8</td>
</tr>
<tr>
<td>KyTea+EDA</td>
<td>2.6</td>
</tr>
</tbody>
</table>
EDA vs. KNP/CaboCha

Input:
向嶽寺派
祇園女御妹-後に平忠盛妻

MeCab+CaboCha:
向嶽寺 school
祇園女御 younger sister : later became the wife of taira no tadamori

KyTea+EDA:
kogaku-ji temple school
gion no nyogo younger sister - , later taira no tadamori 's wife

Smaller, more accurate segmentation provides better translations (EDA)
EDA vs. CaboCha/KNP

Input:
大宮学舎旧守衛所
文学部社会学科を設置

MeCab+CaboCha:
former omiya campus . office
department of faculty of letters society was established .

KyTea+EDA:
omiya campus former guard office
department of sociology , faculty of letters was established .

Word-based noun-phrase parsing helps translation (EDA)
EDA vs. CaboCha/KNP

Input:
芳崖と雅邦はともに地方の狩野派系絵師の家の出身であった。

MeCab+CaboCha:
hogai and gaho both was from a family of local painters of the kano school.

KyTea+EDA:
hogai and gaho from the family of the region of the kano together school series painter.

CaboCha/KNP wins followed no clear pattern. This case: CaboCha: “とみに→出身” EDA: “ともに→地方”
CaboCha vs. KNP

Input:
谷万太郎
1391年-山名氏清
1392年～1394年-畠山基国

JUMAN/KNP:
taro million tani
in 1391 , - the yamana clan
- in 1392 - 1394 hakekeyama) province

MeCab+CaboCha:
mantaro tani
1391 , : ujikiyo yamana
1392 1394 : motokuni hakekeyama

Most prominent wins for CaboCha were segmentation
Conclusion

- **Egret** is best for English, and forests are important.
- **KyTea+EDA** is best for Japanese
 - At the moment, *morphological analysis is more important than parsing*?
- **Future directions**:
 - Forest-based parser!
 - Better bunsetsu → word dependency conversion rules
Other Settings
Question:

What other settings have a significant effect on translation results?
Composed Rules

• Combine two minimal rules into larger rules:

- Combine two minimal rules into larger rules:

 - English: "ate x1 x0"
 - Japanese: "ご飯を食べた"

- Composed rule:

 - English: "ate x0"
 - Japanese: "ご飯を食べた"
Composed Rules (En-Ja)

- Composed rules are very important
Number of Non-Terminals

<table>
<thead>
<tr>
<th>0 NT</th>
<th>1 NT</th>
<th>2 NT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP</td>
<td>PP</td>
<td>VP</td>
</tr>
<tr>
<td>V</td>
<td>N</td>
<td>V</td>
</tr>
<tr>
<td>4</td>
<td>2-3</td>
<td>4-5</td>
</tr>
<tr>
<td>5</td>
<td>P</td>
<td>SUF</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>eat</td>
<td>た</td>
<td>eat</td>
</tr>
<tr>
<td>た</td>
<td>た</td>
<td>た</td>
</tr>
</tbody>
</table>

ate
ate x0
x1 x0
Number of Non-Terminals (En-Ja)

- 2 Non-terminals are necessary, but more are harmful
- Why? Larger are more noisy?
Binarization (En-Ja)

- Right or left much better than none
- In general right > left for En-Ja, left > right for Ja-En
Tuning

• Two evaluation measures:
 • BLEU correlated with fluency
 • RIBES correlated with adequacy
• Tune both of these measures with MERT
• Also, might be worth considering both [Duh+ 12], so we use linear combination BLEU+RIBES also
Experiments in English-Japanese Tree-to-String Machine Translation

Tuning

En-Ja

<table>
<thead>
<tr>
<th>BLEU</th>
<th>RIBES</th>
<th>BLEU+RIBES</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>17</td>
<td>18</td>
</tr>
</tbody>
</table>

Ja-En

<table>
<thead>
<tr>
<th>BLEU</th>
<th>RIBES</th>
<th>BLEU+RIBES</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>15.8</td>
<td>16</td>
</tr>
</tbody>
</table>

Scores

- BLEU: 66.5, 63.5, 65.5
- RIBES: 68, 64.5, 63.5
- BLEU+RIBES: 67, 64, 63
Conclusion
Insights

- How well does tree-to-string work for En-Ja, Ja-En?
 - As well as phrase-based with pre-ordering [Neubig+ 12]
 - Forest-to-string translation works better for En-Ja
- Egret worked best for English-Japanese KyTea+EDA worked the best for Japanese-English
- For Ja-En we need:
 - Better morphological analysis!
 - Pass multiple morphological analysis results to parsing!
 - n-best or forest based parser!
Thank You!