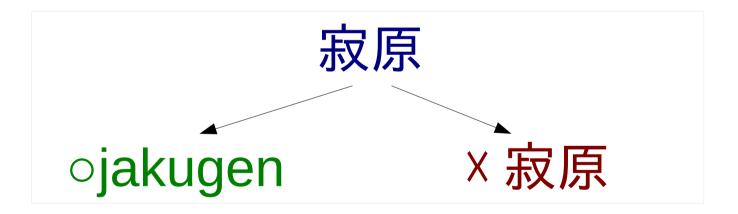
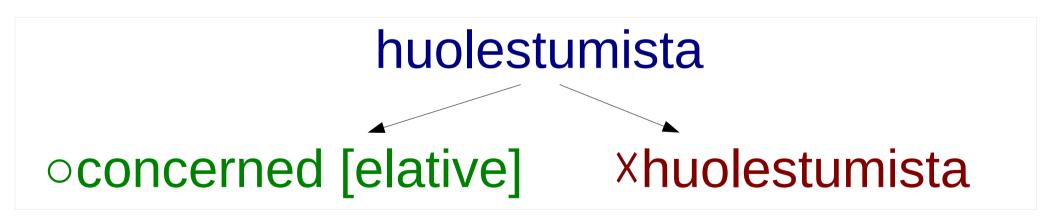
Machine Translation without Words through Substring Alignment

Graham Neubig^{1,2,3}, Taro Watanabe², Shinsuke Mori¹, Tatsuya Kawahara¹

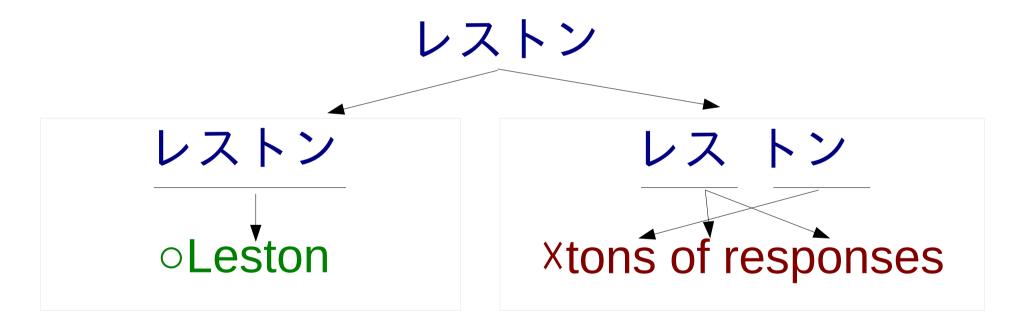

1

Machine Translation

- Translate a source sentence F into a target sentence E
- F and E are strings of words


Sparsity Problems

• **Transliteration:** For proper names, change from one writing system to another


Sparsity Problems

• Inflected or compound words cause large vocabularies and sparsity

Sparsity Problems

 Chinese and Japanese have no spaces, must be segmented into words

(Lots of!) Previous Research

- Transliteration: [Knight&Graehl 98, Al-Onaizan&Knight 02, Kondrak+ 03, Finch&Sumita 07]
- Compounds/Morphology: [Niessen&Ney 00, Brown 02, Lee 04, Goldwater&McClosky 05, Talbot&Osborne 06, Bojar 07, Macherey+ 11, Subotin 11]
- Segmentation: [Bai 08, Chang 08, Zhang 08]
- All focus on solving one of these particular problems

Can We Translate Letters? [Vilar+ 07]

• Problems because we are translating words!

- Previously: "Yes, but only for similar languages"
 - Spanish-Catalan [Vilar+ 07] Thai-Lao [Sornlertlamvanich+ 08] Swedish-Norwegian [Tiedemann 09]

Yes, We Can!

- We show character-based MT can match word-based MT for distant languages.
- Key: Many-to-many alignment through Bayesian Phrasal ITG [Neubig+ 11]
 - Improved speed and accuracy for characterbased alignment
- Competitive automatic and human evaluation
- Handles many sparsity phenomena

Word/Character Alignment

One-to-Many Alignment (IBM Models, GIZA++)

• Each source word must align to at most one target word [Brown 93, Och 05]

One-to-Many Alignment of Character Strings

• There is not enough information in single characters to align well

b	oth_projects_are_audacious.
ι.	
е.	
s.	
d X	
е.	
u.	
х.	X
	X
r.	X
	· · · · · X · · · · · · · · · · · · · ·
j.	· · · · · · X · · · · · · · · · · · · ·
	XXXXX
	.X
s.	• • • • • • • • • • • • • • • • • • • •
_	•••••
	X
	XX
_	XX
	XX
-	· [2 · · · · · X · · · X · · · · · · · · ·
d.	. 🔊
	·····X
с.	X
i .	
	X.
	x
	X.
• •	X

One-to-Many Alignment of Character Strings

- There is not enough information in single characters to align well
- Words with the same spelling do work:
 - "proje" ⇔ "proje"
 - "audaci" ⇔ "audaci"

	both projects are audacious.	
ι	·····	
e		
s		
-		
d	x	
e		
ŭ		
x	x	
î		
p		
r	\mathbf{X}	
-	\mathbf{X}	
0		
j	·····	
e	·····X····××······	
t	· · X · · · · · · · · · · · · · · · · ·	
s	••••••	
_	•••••	
s	••••••	
0	· · · · · · · · · · · · · · · · · · ·	
n		
t	XX	
_	XX.	
а	XX	
u	···\ <u>\</u> XX	
d	X.	
а	· · · · · · · · · · · · · · · · · · X	
С	· · · · · · · · · · · · · · · · · · ·	
i		
e		
u	X.	
х	x.	_
•	X	

Many-to-Many Alignment

• Can directly generate phrasal alignments

the hotel front desk ホテル の 受付

 Often use the Inversion Transduction Grammar framework [Zhang 08, DeNero 08, Blunsom 09, Neubig 11]

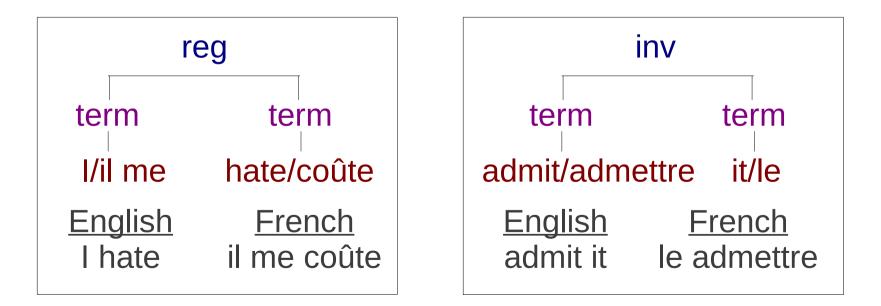
Many-to-Many Alignment of Character Strings

- Example of [Neubig+ 11] applied to characters
- Recover many types of alignments:
 - Words: "project" ⇔ "projet"
 - Phrases: "both" ⇔ "les deux"
 - Subwords: "~cious" ⇔ "~cieux"
 - Even agreement!:

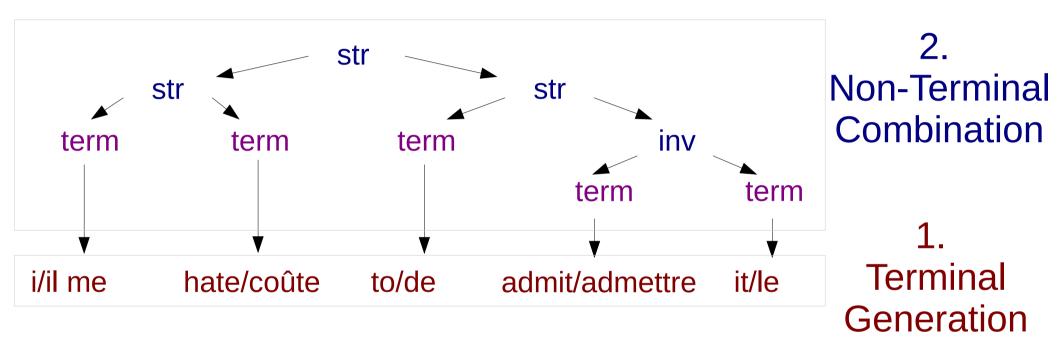
"~s are" ⇔ "~s sont"

	both projects are audacious.
ι	XXXX.
e	xxxx
s	xxxx
-	xxxx
d	xxxx
e	xxxx
u	xxxx
x	xxxx
î	XXXXXXXX
p	
r	
0	
j	XXXXXXXX
e	xxxxxxxx
t	xxxxxxxx
s	
_	xxxxxx
s	XXXXXX
0	
n	
t	
	xxxxxx
a	xx
u	xx
d	x.
a	xx
c	······
i	
_	
e	
u	
х	
	X

Two Problems


1) Alignment algorithm is too slow

- We introduce a more effective beam pruning method using look-ahead probabilities (similar to A*)
- 2) Prior probability is still single-unit based
 - We introduce prior based on sub-string co-occurrence


Look-Ahead Parsing for ITGs

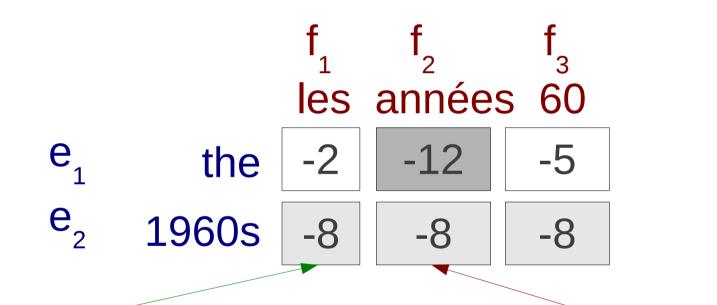
Inversion Transduction Grammar (ITG)

- Like a CFG over two languages
 - Have non-terminals for regular and inverted productions
 - One pre-terminal
 - Terminals specifying phrase pairs

Two Steps in ITG Parsing

- Step 1 is calculated by looking up all phrase pairs
- Step 2 is calculated by combining neighboring pairs
 - Takes most of the time

Beam Search for ITGs [Saers+ 09]

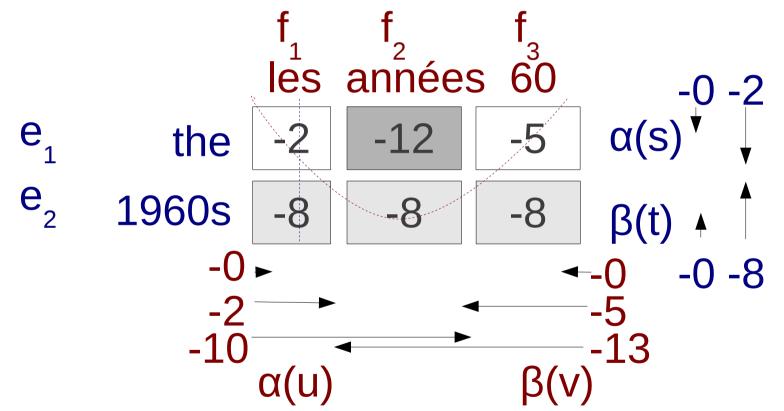

• Stacks of elements with same number of words

<u>Siz</u>	<u>e 1</u>	<u>Size</u>	2	<u>Size (</u>	3
i/ɛ	P=1e-6	i/me	P=1e-3	i/il me	P=1e-5
ε/il	P=1e-6	to/de	P=5e-4	hate/me coûte	P=1e-6
ε/le	P=7e-7	it/le	P=4e-4	i hate/coûte	P=8e-7
to/ɛ	P=6e-7	i/il	P=2e-4	to/il me	P=4e-7
ε/me	P=3e-7	hate/coûte	P=1e-4	admit/le admettre	P=8e-8
ε/de	P=2e-7	ε/il me	P=4e-5	admit it/admettre	P=5e-8
it/ε	P=2e-7	admit/admettre	P=2e-5	i/me coûte	P=2e-8
hate/ɛ	P=5e-8	to/me	P=5e-6	to/me	P=1e-8

Do not expand elements outside of fixed beam (1e-1)¹

Problem with Simple Beam Search

Does not consider competing alignments!


Has competitor "les/the" = can be pruned

Has no good competitor = should not be pruned

* scores are log probabilities

Proposed Solution: Look Ahead Probabilities and A* Search

• Minimum probability to translate monolingual span

• Beam score: inside prob * outside probabilities $\min\left(\begin{array}{c} \alpha(u) + \log(P(s,t,u,v)) + \beta(v), \\ \alpha(s) + \log(P(s,t,u,v)) + \beta(t) \end{array}\right)$

Substring Co-occurrence Prior Probability

Substring Occurrence Statistics

रु

- For each input sentence count every substring
 - Use enhanced suffix array for efficiency (esaxx library)
- Make a matrix

	そ	れ	は	鉛	筆	で	す
2							

これはペンで

	F1	F2	
Ž	1	0	
れ	1	1	
これ	1	0	
は	1	1	
れは	1	1	
これは	1	0	
\sim	1	0	
はペ	1	0	
れはペ	1	0	22
これはペ	1	0	23

Substring Co-occurrence Statistics

• Take the product of two matrices to get co-occurrence

*

	F1	F2	
č	1	0	
れ	1	1	
これ	1	0	
は	1	1	
れは	1	1	
これは	1	0	
~	1	0	
はペ	1	0	
れはペ	1	0	
これはペ	1	0	

	t	h	th	i	hi	thi	S	is	his	this
E1	1	1	1	1	1	1	1	1	1	1
E2	1	1	1	1	0	0	1	1	0	0
 c(f,e)										

Making Probabilities and Discount

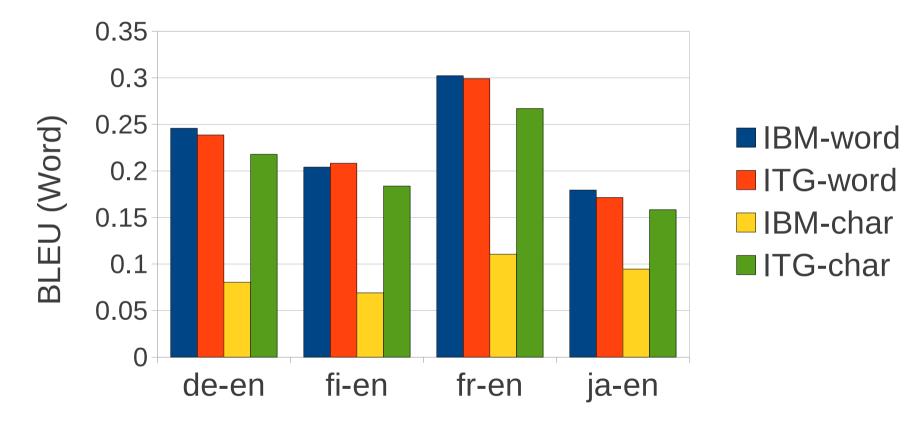
- Convert counts to probabilities by taking geometric mean of conditional probabilities (best results)
- In addition, discount counts by fixed d (=5)
 - Reduces memory usage (do not store $c_{e,f} \le 5$)
 - Helps prevent over-fitting of the training data

$$P(e,f) = \left(\frac{c_{e,f} - d}{c_e - d} \frac{c_{e,f} - d}{c_f - d}\right)/Z$$

Experiments

Experimental Setup

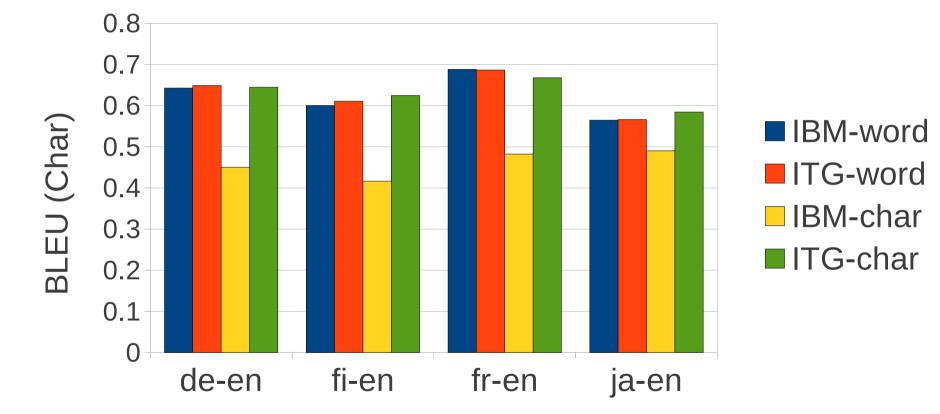
- 4 languages with varying characteristics ⇔ English:
 - German: Some compounding
 - Finnish: Very morphologically rich
 - French: Mostly word-word correspondence
 - Japanese: Requires segmentation, transliteration


		KF	ТТ			
	de	fi	fr	en	ja	en
ТМ	2.56M	2.23M	3.05M	2.80M/3.10M/2.77M	2.34M	2.13M
LM	15.3M	11.3M	15.6M	16.0M/15.5M/13.8M	11.9M	11.5M
Tune	55.1k	42.0k	67.3k	58.7k	34.4k	30.8k
Test	54.3k	41.4k	66.2k	58.0k	28.5k	26.6k

- Sentences of 100 characters and under were used
- Evaluate with word/character BLEU, METEOR

Systems

- Which unit?
 - Word-Based: Align and translate words
 - Char-Based: Align and translate characters
- Which alignment method?
 - One-to-many: IBM Model 4 for words, HMM model for characters
 - Many-to-many: ITG-based model with proposed improvements


BLEU Score (Word)

ITG-Char vs.

IBM-Char: +0.1374 +0.1147 +0.1565 +0.0638 ITG-Word: -0.0208 -0.0245 -0.0322 -0.0130

BLEU Score (Char)

ITG-Char vs.

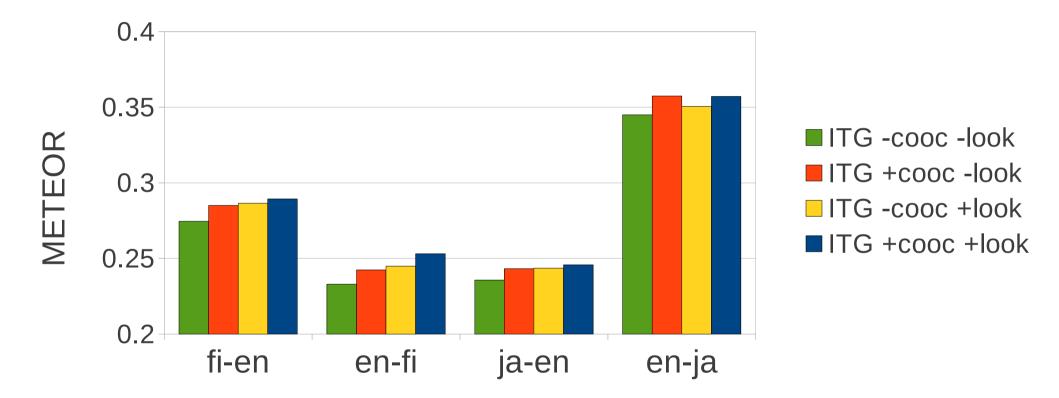
IBM-Char: +0.1946 +0.2082 +0.1853 +0.0939 ITG-Word: -0.0042 +0.0140 -0.0188 +0.0181

Human Adequacy Evaluation

• 200 sentences in each language, 0-5 rating

	ITG-Word	ITG-Char
ja-en	2.085	2.154
fi-en	2.851	2.826

• Systems are comparable (no difference at P<0.05)


Notable Improvements

• Examples where ITG-Char was 2+ points better

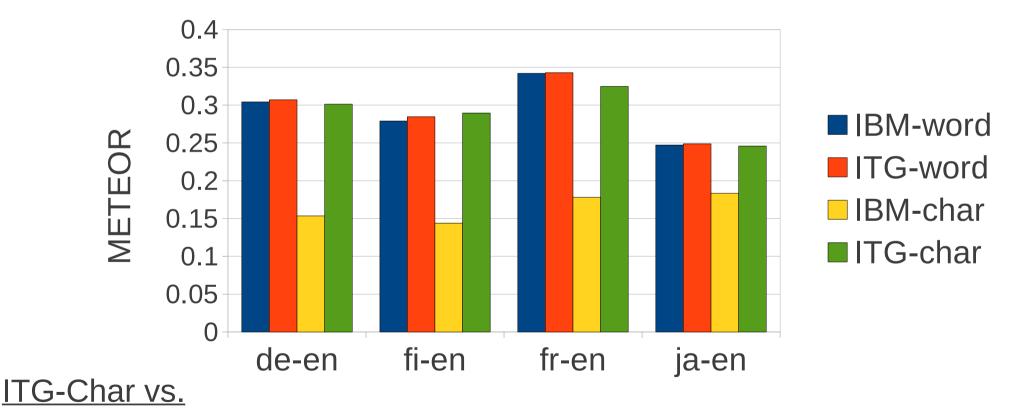
Unknown (13/26) Word tasa-arvodirektiivi	Ref directive on ec	quality
	(26) Word tasa-arvodirek	tiivi
Char equality directive	Char equality directi	ive
Ref yoshiwara-juku station		u station
Target Unknown (5/26)Wordyoshiwara no eki	wn Word yoshiwara no e	eki
Char yoshiwara-juku station	Char yoshiwara-juku	u station
Ref world health organisation	Ref world health or	rganisation
Uncommon (5/26) Word world health	5/26) Word world health	
Char world health organisation	Char world health or	rganisation

ITG-Word was often better at reordering

Effect of Proposed Improvements over [Neubig+ 11] (METEOR)

Look-ahead also allowed for a 2x improvement in speed

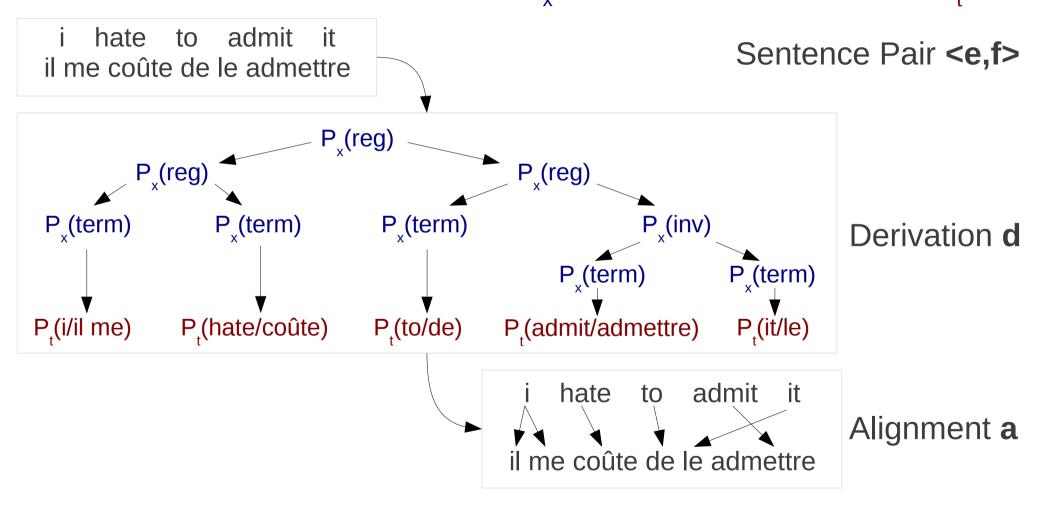
Conclusion


- Character-based SMT can achieve comparable results to word-based SMT
 - + Is able to handle sparsity issues
- Remaining challenges:
 - Improve decoding to allow for better reordering
 - Treat spaces differently than other characters to improve alignment/decoding

Available Open Source: http://www.phontron.com/pialign

Thank You!

METEOR Score (Word)


 Counts reordering, matches using lemmatization, synonyms

IBM-Char: +0.1477 +0.1455 +0.1467 +0.0624 ITG-Word: -0.0059 +0.0048 -0.0182 -0.0031

Biparsing-based Alignment with ITGs

Non/pre-terminal distribution P, and phrase distribution P

• Viterbi parsing and sampling both possible in $O(n^6)$ ³⁷