Inducing a Discriminative Parser to Optimize Machine Translation Reordering

Graham Neubig^{1,2,3}, Taro Watanabe², Shinsuke Mori¹

Preordering

- Long-distance reordering is a weak point of SMT
- Preordering first reorders, then translates

• A good preorderer will effectively find F' given F

Syntactic Preordering

• Define rules over a syntactic parse of the source

• What if we don't have a parser in the source language? ³

Bracketing Transduction Grammars [Wu 97]

• Binary CFGs with only straight (S) and inverted (I) non-terminals, and pre-terminals (T)

- Language independent
- BTG tree uniquely defines a reordering

Inducing a Discriminative Parser to Optimize Machine Translation Reordering

3-Step BTG Grammar Training for Reordering [DeNero+ 11]

Inducing a Discriminative Parser to Optimize Machine Translation Reordering

3-Step BTG Grammar Induction for Reordering [DeNero+ 11]

Our Work: Inducing a Parser to Optimize Reordering

• What if we can reduce three steps to one, and directly maximize ordering accuracy?

Optimization Framework

Optimization Framework

Input: Source sentence F

F= kare wa gohan o tabeta

Output: Reordered source sentence F'

F'= kare wa tabeta gohan o

• Latent: Bracketing transduction grammar derivation D

Scores and Losses

Define a score over source sentences and derivations

$$S(F,D;w) = \sum_{i} w_{i} * \phi_{i}(F,D)$$

• Optimization finds a weight vector that minimizes loss

$$\underset{w}{\operatorname{argmin}}\sum_{F,F'} L(F'', \underset{F' \leftarrow F,D}{\operatorname{argmax}}S(F,D;w))$$

Note: Latent Variable Ambiguity

- Out of these, we want easy-to-reproduce trees
- [DeNero+ 11] finds trees with bilingual parsing model
- Our model discovers trees during training

Training: Latent Online Learning

- Find
 - model parse of maximal score and
 - oracle parse of maximal score among parses of minimal loss

Adjust weights (example: perceptron)

$$\boldsymbol{W} \leftarrow \boldsymbol{W} + \boldsymbol{\varphi} (\boldsymbol{F}, \hat{\boldsymbol{D}}) - \boldsymbol{\varphi} (\boldsymbol{F}, \boldsymbol{D})$$
¹²

Considering Loss in Online Learning

• Consider loss (how bad is the mistake?)

kare	wa	tabeta	gohan	0	reference (L=0)
kare	wa	gohan	tabeta	0	L=1
o go	ohan	tabeta	wa ka	are	L=8

Make it easy to choose trees with high loss in training

 \rightarrow To avoid high-loss trees, must give a large penalty

$$D = \operatorname*{argmax}_{\tilde{D}} S(F, \tilde{D}) + L(F, \tilde{D})$$

Parser

Parsing Setup: Standard Discriminative Parser

- Features independent with respect to each node
 - Parsing, reordering possible in O(n³) with CKY
- Multi-word pre-terminals allowed

Language Independent Features

• No linguistic analysis necessary

- Lexical: Left, right, inside, outside, boundary words
- Class: Same as lexical but induced classes
- Phrase Table: Whether span exists in phrase table
- Balance: Left branching or right branching?

Language Dependent Features

- POS Features: Same as lexical, but over POSs
- CFG Features: Whether nodes match supervised parser's spans

Reordering Losses

Inducing a Discriminative Parser to Optimize Machine Translation Reordering

Reordering Losses [Talbot+ 11]: Chunk Fragmentation

How many chunks are necessary to reproduce reference?

Loss:

$$L_{chunk}(F, \tilde{D}) =$$
 Number of Chunks - 1

Accuracy:

$$A_{chunk}(F, \tilde{D}) = 1 - (Number of Chunks - 1)/(J+1)$$

Reordering Losses [Talbot+ 11]: Kendall's Tau

• How many pairs of reversed words?

<u>Loss:</u> $L_{tau}(F, \tilde{D}) =$ Reversed Words

Accuracy:

 $A_{tau}(F, \tilde{D}) = 1$ - Reversed Word/Potential Reversed Words

Calculating Loss by Node

- Large-margin training, must calculate loss efficiently $D = \operatorname*{argmax}_{\tilde{D}} S(F, \tilde{D}) + L(F, \tilde{D})$
- Can factor loss by node as well (detail in paper)

Experiments

Experimental Setup

- English-Japanese and Japanese-English translation
- Data from the Kyoto Free Translation Task

	sent.	word (ja)	word (en)	
RM-train	602	14.5k	14.3k	Manually
RM-test	555	11.2k	10.4k	Aligned
LM/TM	329k	6.08M	5.91M	
tune	1166	26.8k	24.3k	
test	1160	28.5k	26.7k	

Experimental Setup

- Reordering Model Training:
 - 500 iterations
 - Using Pegasos with regularization constant 10⁻³
 - Default: chunk fragmentation loss, standard features
- Translation: Moses with lexicalized reordering
- Compare: <u>Orig</u>inal order, <u>3-step</u> training, the <u>proposed</u> method

Result: Proposed Model Improves Reordering

• Results for chunk fragmentation/Kendall's Tau

Result: Proposed Model Improves Translation

• Results for BLEU and RIBES:

Result: Adding Linguistic Info (Generally) Helps

Result: Training Loss Affects Reordering

• Optimized criterion is higher on test set as well

Result: Training Loss Affects Translation

Optimizing chunk fragmentation generally gives best results

Inducing a Discriminative Parser to Optimize Machine Translation Reordering

Result: Automatic Alignments, Better than Nothing, Worse than Manual

Parsing Result

Conclusion

- Presented a method to induce a discriminative parser to optimize machine translation reordering
- Favorable results for English ↔ Japanese
- Future Work:
 - Development of better features
 - Incorporation into tree-to-string translation
 - Probabilistic inference

Will be!

^ Available Open Source: <u>http://www.phontron.com/lader</u>

Thank you!