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Background
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Speech Translation

Source: Microsoft Research
http://research.microsoft.com/en-us/news/features/translator-052714.aspx

Source: NICT
http://www.nict.go.jp/press/2010/06/29-1.html

Source: Karlsruhe Institute of Technology
http://isl.anthropomatik.kit.edu/english/1520.php
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Traditional Speech Translation

ASR

こんにちは、駅はどこですか？
MT

Hello, where is the station?

TTS

Divide at
sentence boundaries
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Simultaneous Speech Translation

Problem: Delay (Ear-Voice Span)

ASR

こんにちは、駅はどこですか？
MT

Hello, where is the station?

TTS

Delay
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Speech Translation Example
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Simultaneous Speech Translation

ASR

こんにちは、
MT

駅は
MT

どこですか？
MT

Hello, the station where is it?

TTS TTS TTS

Delay: Reduced

But, this is not easy!
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Professional Simultaneous Interpretation

Photo Credit:
https://www.flickr.com/photos/joi/2027679714
https://www.flickr.com/photos/european_parliament/4268490015
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Simultaneous Interpretation Data
[Shimizu+ LREC14]

 Recorded data

　－　 About 10 Hours of TED Talks
(English-Japanese, Japanese-English)

　
 

Experience Rank

15 years S rank

4 years A rank

1 year B rank

Freely available for research purposes:

http://ahclab.naist.jp/resource/stc/

 Simultaneous interpreters

　－　 3 pros with varying years of
            experience

　－　 Ranked S, A, and B
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Simultaneous Interpreter Example
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So How do Simultaneous
Interpreters Do It?

今ご覧いただいたこの映像は今から五年前、日本で世間を
賑わせていた裁判員制度が始まる一年前、大学四年生だった
私が模擬裁判用の資料として作った物です

Source:

Translation:

You just saw this video clip. Five years ago, at that time in Japan,
the ordinary people's justice system, jury system, was very much
talked about in Japan, and I created this video as a reference
material for that.

Interpretation:

Five years ago, as a college senior, I created the video that you just
saw as a reference material for a mock trial, one year before the
much-talked-about jury system commenced in Japan.

Segmentation Prediction Rewording Summarization

Predict NP
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Can We Do the Same in
Speech Translation Systems?

● Segmentation: When do we start translating?

● Prediction: Can we predict things that haven't been
said?

● Rewording: Can we reword sentences to be conducive
to simultaneous translation?

● Evaluation: How do we decide which results are
better?

Four problems in this talk:
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Segmentation
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Heuristic Segmentation Strategies

hello where is the station

Division on pauses [Fugen+ 07, Bangalore+ 12]

Division on predicted commas [Sridhar+ 13]

comma no comma

Division based on reordering probabilities [Fujita+ 13]

hello → probability of reordering 0.1
where → probability of reordering 0.8
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Optimizing Segmentation Strategies for 
Simultaneous Speech Translation

[Oda+ ACL14]
● All previous segmentation strategies were based on

heuristics

● Don't directly take into account effect on translation
accuracy

What if we could directly optimize sentence
segmentation for translation accuracy?
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Training/Testing Framework

src src src
src src src
src src src

trg trg trg
trg trg trg
trg trg trg

Training Corpus

src src src
src src src
src src src

Segmentation S*Find segmentation S*
that maximizes MT

accuracy

Train segmentation
model

Model

src src src
src src src
src src src

Testing Corpus

src src src
src src src
src src src

Segmented Test

trg trg trg
trg trg trg
trg trg trg

Translated Test

Segment Translate
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S* Search Method 1: Greedy Search
I ate lunch but she left 私は昼食を食べたが彼女は帰った

I ate lunch but she left
I ate lunch but she left
I ate lunch but she left
I ate lunch but she left
I ate lunch but she left

私 昼食を食べたが彼女は帰った
私は食べた ランチ彼女は帰った
私は昼食を食べた しかし彼女は帰った
私は昼食を食べたが 彼女は帰った

私は食べたが彼女 左
I ate lunch but she left

I ate lunch but she left 私 昼食を食べたが 彼女は帰った
I ate lunch but she left 私は食べた 昼食だが 彼女は帰った
I ate lunch but she left 私は昼食を食べたしかし 彼女は帰った
I ate lunch but she left 私は昼食を食べたが 彼女 左
I ate lunch but she left

0.7
0.4
0.6
1.0
0.2

0.9
0.3
0.6
0.2

Train SVM classifier to recover / at test time
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S* Search Method 2:
Grouping by Features

 I    ate   lunch   but   she   left
 PRN      VBD          NN            CC        PRN         VBD

 I    ate   an   apple   and   an   orange
PRN       VBD      DET        NN             CC       DET           NN 

Pronoun + Verb Noun + Conjunction Determiner + Noun

● Because MT/Evaluation is complicated, there is the
potential to overfit

● Solution: group boundaries by features

Search can be performed using dynamic programming
Features for the model trivial, no learning is needed
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Results on TED Talks

→ 2-3 times faster with no loss in BLEU
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Simultaneous Translation Demo
● Greedy+Grouping at 10 words
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Future Contributions to Segmentation?

● Speech:
Optimized models using acoustic features?

● Parsing:
Incorporation with incremental parsing? e.g. [Ryu+ 06]

● Machine Learning:
Smarter models: neural networks?

● Algorithms:
Integration with incremental decoding? e.g. [Sankaran+ 10]
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Prediction
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What Kind of Prediction do Simultaneous
Interpreters Do? [Wilss 78, Chernov+ 04]

● Structural prediction

サイエンスを正しく楽しく、これを合い言葉にサイエンスCG
  science       factual  fun        this  keyword    as  science    CG
 

                                               then what I wanted to do is to

クリエーターとして活動しています。
     creator        as          working
 

promote fun and factual science, that's my keyword. I'm a …

今    ご覧頂いた    映像
now   you saw       video
 

                       you just saw a video clip

● Lexical prediction
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Predicting Sentence-final Verbs
[Grissom et al., EMNLP14]

● Method for translating from verb-final languages (e.g. German)
● Train a classifier to predict the sentence-final verb
● Use reinforcement learning to decide to “wait” “predict” or “commit”



25

Simultaneous Speech Translation

Syntax-based Simultaneous Translation through Prediction
of Unseen Syntactic Constituents [Oda+ ACL15]

● Predict unseen syntax constituents

In the next 18 minutes I

PP

NPIN

NP

NN

NP

NNSCDJJDT

Iminutes18nextthein

PP

S

IN NP PRP

NP

NNSCDJJDT

Iminutes18nextthein (VP)

VP

Predict

VP

● Translate from correct tree

今 から 18 分 私 今 から 18 分 で 私 は (VP)
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Why is Syntax Necessary?

● Tree-to-string (T2S) MT framework

This is NP

This is

DT VBZ
NP

VP
NP

S

Parse

これ は NP で すMT

● Obtains state-of-the-art results on syntactically distant language

pairs (c.f. phrase-based translation; PBMT)

● Possible to use additional syntactic constituents explicitly

● Additional heuristic to wait for more input based on when
translation requires reordering
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Leaf span

Making Training Data for Syntax Prediction
● Decompose gold trees in the treebank

S

VPNP

NN

NP

DT

VBZ

penaisThis

DT

1. Select any leaf span in the tree

2. Find the path between
leftmost/rightmost leaves

3. Delete the outside subtree

NN

4. Replace inside subtrees
with topmost phrase label

5. Finally we obtain:

nil is a NN nil

Leaf spanLeft syntax Right syntax
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Syntax Prediction Process

Iminutes18nextthein
Input translation unit

PP

NPIN

NP

NN

NP

NNSCDJJDT

1. Parse the input as-is

Word:R1=I
POS:R1=NN
Word:R1-2=I,minutes
POS:R1-2=NN,NNS
...

ROOT=PP
ROOT-L=IN
ROOT-R=NP
...

2. Extract features

VP ... 0.65
NP ... 0.28
nil ... 0.04
...

3. Predict the next tag
(linear SVM)

VP

4. Append to
    sequence

nil 5. Repeat until nil
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Results: Translation Trade-off (1)
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● Short inputs reduce translation accuracies

Using N-words segmentation (not-optimized)
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Results: Translation Trade-off (2)
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● Long phrase ... T2S > PBMT
● Short phrase ... T2S < PBMT
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Results: Translation Trade-off (3)
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● Prevent accuracy decreasing in short phrases
● More robustness for reordering
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Future Contributions to Prediction?

● Language Modeling:
More sophisticated models for lexical prediction.

● Lexical Simplification:
Predict a more general word, then replace it later?

● Machine Learning:
End-to-end reinforcement learning of the whole
system?
Application of neural MT models?
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Rewording
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What Kinds of Rewording
May Be Helpful?

● Passivization [He+ 15]

私は
I

昨日
yesterday

本を
book

安い
a cheap

買った
bought

I bought a cheap book yesterday

yesterday a cheap book was bought by me

● Conjunction Clauses [Shimizu+ 13]

Y dakara X
X nazenaraba Y

X    because   Y

● etc.
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Constructing a Speech Translation System using
Simultaneous Interpretation Data [Shimizu+ IWSLT13]

Input

Translation System

Interpreted

Training

Translated

Interpretation-
like results

Traditional
Proposed

 Approach:

　－　 Incorporate simultaneous interpretation data in
training the MT system

 [Paulik+ 08] use interpretation data, but to improve accuracy
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Incorporating Interpretation Data

 Tuning (Tu)

　－　 Tune the parameters of the translation systems

to match the interpretation data

 Language Model (LM): Linear Interpolation

　－　Match the style of simultaneous interpreters

 Translation Model (TM): fill-up [Bisazza+ 11]

　－　 Like the LM, adapt the TM to match interpretation data

Interpretation data is small,
so use adaptation techniques
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Experimental Evaluation

Accuracy measured against simultaneous
interpretation reference

Phrase Sentence
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Examples of Learned Traits

Shortening Starting sentences with “OK” or “And”
(Also done by interpreter in 25% of sentences)
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Syntax-based Rewriting for Simultaneous
Machine Translation [He+ EMNLP15]

● Reword the target language to be closer to source

● Passivizing, changing order of clauses when beneficial
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Future Contributions in Rewording?

● Paraphrasing:
More generalized models of structural paraphrasing?

● Semantic Similarity:
How can we evaluate semantic similarity between
sentences structurally different from the reference?



41

Simultaneous Speech Translation

Evaluation
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Speed vs. Accuracy
● Tradeoff between speed and accuracy.

Delay

Ac
cu

ra
cy

LongShort

H
ig

h
Lo

w

  もっと  手頃な ホテルは  ありませんか
     more   cheap     hotel          is there
  もっと  手頃な ホテルは  ありませんか
     more   cheap     hotel          is there

Don’t split the sentence

Split the sentence

do you have a more reasonable hotel ? /

more / reasonable / is there a hotel ? /

● Given two systems of different speed and accuracy, 
which is better?
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Speed or Accuracy? A Study in Evaluation of
Simultaneous Speech Translation Systems

[Mieno+ InterSpeech15]
• Based on speed and accuracy, determine which system is better

High

Low
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y
A
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ur
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y

A
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y

Delay

Delay

Delay
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How to Create an Evaluation Function?
(Based on Data)

AccuracyAccuracy

DelayDelay

Training Data

FeaturesTranslations with various
delays and accuracies

M
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va
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 F
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Manual
Evaluation

Results

Manual
Evaluation

Results
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Manual Evaluation Format
• Rank-based evaluation

– Perform comparative evaluation of which output is “better”
– Allows for consideration of both speed and accuracy

System A

System B

System C

Output A

Output B

Output C

2

1

3

In
pu

t v
id

eo

R
a

nk
in

g
 b

y
ev

al
ua

to
rs
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Evaluation Sheet Example
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Learning an Evaluation Function

 

Weight vector Features useful in
evaluation
(i.e., delay and accuracy)

Displayed
video

Define a linear function that takes a video as input
and returns a score

This function can be learned from ranked data
using “learning to rank”
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Experimental Setup

• Target video

TED TalksTED Talks

• Gathered data
Video 20 Types 20-30 Seconds

Delay 7 Types 0,1,2,3,5,7,10
Seconds

Accuracy 3 Types Auto: BLEU/RIBES
Man: Adequacy

Subjects 15 Japanese speakers

Modalities Subtitled Dubbed

• Translation data
(5 varieties)
English → Japanese

① Realtime trans. is
important

② Often used in MT
evaluation

TranslatorTranslator

Interpreter 1
(S Rank)

Interpreter 1
(S Rank)

Interpreter 2
(A Rank)

Interpreter 2
(A Rank)

Syntax-based MTSyntax-based MT

Phrase-based MTPhrase-based MT



  49

Speed or Accuracy? A Study in Evaluation of Simultaneous Speech Translation

Evaluation of Evaluation

Acc. Delay+Acc.
0
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Speech

None
BLEU+1
RIBES
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Q1: Is Delay Important in S2S
Translation?

Acc. Delay+Acc.
0
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1

Speech

None
BLEU+1
RIBES
Adeq.

A: Yes! In all cases, the scoring function considering delay
did as good or better than just considering accuracy.
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Q2: Does Importance Depend on
Modality of Presentation?

Acc. Delay+Acc.
0
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A: Yes! Considering delay was more useful when 
presenting results through subtitles.
Why?: Probably because when watching subtitles, it
is possible to hear the original speech.

Avg. +7% Avg. +3%
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Learned Evaluation Functions
(for Adequacy)

Speech OutputSubtitle Output
5

4

3

2

1
0 2 4 6 8 10

Delay (s)

5
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Accuracy Delay

Subtitle Output 1.40 -0.059

Speech Output 1.99 -0.018

1 point of adequacy =

8.0 sec. of delay

28.5 sec. of delay
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Future Contributions in Evaluation?

● Adaptation:
A more flexible evaluation measure that generalizes to
many modalities, genres, tasks.

● Machine Learning:
Non-linear regression functions?

● Speech/UI:
Other factors including presentation modality 
(avatars?), synthesis quality play a large role.
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Conclusion
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Conclusion

● The problem of high-accuracy simultaneous translation
covers many fields of NLP/Speech: parsing, machine
learning, language modeling, prosody, paraphrasing.

● Still a new field, lots of opportunities for interesting
applications of NLP tech!


