What Can Neural Networks Teach us about Language?

Graham Neubig a2-dlearn 11/18/2017

Carnegie Language

Carnegie Mellon University

Language Technologies Institute

Supervised Training of Neural Networks for Language

Training Data

Unlabeled Data

this is another example

Basis to further improve the model

Unsupervised Training of Neural Networks for Language

Unlabeled Training Data

this is an example

the cat went to the store

Induced Structure/Features

Three Case Studies

- Learning features of a language through translation
- Learning about linguistic theories by learning to parse

Methods to accelerate your training for NLP and beyond

Learning Language Representations for Typology Prediction

Chaitanya Malaviya, Graham Neubig, Patrick Littell EMNLP2017

Languages are Described by Features

Syntax: e.g. what is the word order?

English = SVO: *he* bought a car **Irish** = VSO: cheannaigh sé carr

Morphology: e.g. how does it conjugate words? **English** = fusional: *she opened the door for him again* **Japanese** = agglutinative: *kare ni mata doa wo aketeageta* **Mohawk** = polysynthetic: *sahonwanhotónkwahse*

Phonology: e.g. what is its inventory of vowel sounds?

- **Japanese** = **SOV**: *kare wa kuruma wo katta* Malagasy = VOS: *nividy fiara izy*

"Encyclopedias" of Linguistic Typology

- There are 7,099 living languages in the world
- Databases that contain information about their features
 - World Atlas of Language Structures (Dryer & Haspelmath 2013)
 - Syntactic Structures of the World's Languages (Collins & Kayne 2011)
 - PHOIBLE (Moran et al. 2014)
 - Ethnologue (Paul 2009)
 - Glottolog (Hammarström et al. 2015)
 - Unicode Common Locale Data Repository, etc.

Information is Woefully Incomplete! Features

- The World Atlas of Language Structures is a general database of typological features, covering ≈200 topics in $\approx 2,500$ languages.
- Of the possible feature/value pairs, only about 15% have values
- Can we learn to fill in this missing knowledge about the languages of the world?

 $\overline{\mathcal{O}}$ σ

How Do We Learn about an Entire Language?!

- Proposed Method:
 - Create representations of each sentence in the language Aggregate the representations over all the sentences

 - Predict the language traits
 - the cat went to the store
 - the cat bought a deep learning book
- the cat learned how to program convnets
 - the cat needs more GPUs

How do we Represent Sentences?

- Our proposal: learn a multi-lingual translation model
- <Japanese> kare wa kuruma wo katta ----- he bought a car

Extract features from the language token and intermediate hidden states

 Inspired by previous work that demonstrated that MT hidden states have correlation w/ syntactic features (Shi et al. 2016, Belinkov et al. 2017)

Experiments

- from the Bible
- Learned language vectors available here: https://github.com/chaitanyamalaviya/lang-reps
- Estimate typological features from the URIEL database (<u>http://</u>)
- **Baseline:** a k-nearest neighbor approach based on language family and geographic similarity

• Train an MT system translating 1017 languages to English on text

<u>www.cs.cmu.edu/~dmortens/uriel.html</u>) using cross-validation

Results

Learned representations encode information about the entire

	Syntax		Phonology		Inventory	
	-Aux	+Aux	-Aux	+Aux	-Aux	+Aux
NONE	69.9 1	83.07	77.92	86.59	85.17	90.68
LMVEC	71.32	82.94	80.80	86.74	87.51	89.94
MTVEC	74.90	83.31	82.41	87.64	89.62	90.94
MTCELL	75.91	85.14	84.33	88.80	90.0 1	90.85
МТВотн	77.11	86.33	85.77	89.04	90.06	91.03

• Trajectories through the sentence are similar for similar languages

GER: Ich bin das A und das O , der Anfang und das Ende, spricht Gott der HERR, der da ist und der da war und der da kommt, der Allmächtige .

CAT: Pau , cridat per voler de Déu a ser KOR: 지금도 계시고 전에도 계셨고 앞으로 오실 전 apòstol de Jesucrist, i el germà Sòstenes 능하신 주 하나님께서 "나는 알파요 오메가다 " 하 고 말씀하십니다.

language, and help w/ predicting its traits (c.f. language model)

POR: Paulo, chamado para ser apóstolo de Cristo Jesus pela vontade de Deus, e o irmão Sóstenes

We Can Learn About Language from Unsupervised Learning!

- We can use deep learning and naturally occurring translation data to learn features of language as a whole.
- But this is still on the level of extremely coarse-grained typological features
- What if we want to examine specific phenomena in a deeper way?

What Can Neural Networks Learn about Syntax?

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng Kong Chris Dyer, Graham Neubig, Noah A. Smith EACL2017 (Outstanding Paper Award)

An Alternative Way of Generating Sentences

Overview

- (RNNG)

Crash course on Recurrent Neural Network Grammars

Answering linguistic questions through RNNG learning

No. Steps	Stack	String Terminals	Action
0			NT(S)
			/- · `

No. Steps	Stack	Terminals	Action
0			NT(S)
1	(S		NT(NP)
2	(S (NP		GEN(the)

No. Steps	Stack	Terminals	Action
0			NT(S)
1	(S		NT(NP)
2	(S (NP		GEN(<i>the</i>)
3	(S (NP <i>the</i>	the	GEN(hungry)

No. Steps	Stack	Terminals	Action
0			NT(S)
1	(S		NT(NP)
2	(S (NP		GEN(<i>the</i>)
3	(S (NP <i>the</i>	the	GEN(hungry)
4	(S (NP the hungry	the hungry	GEN(cat)

No. Steps	Stack	Terminals	Action
0			NT(S)
1	(S		NT(NP)
2	(S (NP		GEN(<i>the</i>)
3	(S (NP <i>the</i>	the	GEN(hungry)
4	(S (NP the hungry	the hungry	GEN(cat)
5	(S (NP the hungry cat	the hungry cat	REDUCE

No. Steps	Stack	Terminals	Action
0			NT(S)
1	(S		NT(NP)
2	(S (NP		GEN(the)
3	(S (NP <i>the</i>	the	GEN(hungry)
4	(S (NP the hungry	the hungry	GEN(cat)
5	(S (NP the hungry cat	the hungry cat	REDUCE
6	(S (NP the hungry cat)	the hungry cat	NT(VP)

No. Steps	Stack	Terminals	Action
0			NT(S)
1	(S		NT(NP)
2	(S (NP		GEN(the)
3	(S (NP <i>the</i>	the	GEN(hungry)
4	(S (NP the hungry	the hungry	GEN(cat)
5	(S (NP the hungry cat	the hungry cat	REDUCE
6	(S (NP the hungry cat)	the hungry cat	NT(VP)

PTB Test Experimental Results Parsing F1

Model

Collins (1999)

Petrov and Klein (2007)

RNNG

Choe and Charniak (2016) - Supervised

Pa	rsi F1	ng	
38.2			

90.1

93.3

92.6

LM Ppl.

Model	LM pr
IKN 5-gram	169.3
Sequential LSTM LM	113.4
RNNG	105.2

In The Process of Learning, Can RNNGs Teach Us About Language?

Parent annotations

Question 1: Can The Model Learn "Heads"?

Method: New interpretable attention-based composition function

Result: sort of

Headedness

- Linguistic theories of phrasal representation involve a strongly privileged lexical head that determines the whole representation
- Hypothesis for single lexical heads (Chomsky, 1993) and multiple ones for tricky cases (Jackendoff 1977; Keenan 1987)
- Heads are crucial as features in non-neural parsers, starting with Collins (1997)

RNNG Composition Function

Use "attention" in sequence-tosequence model (Bahdanau et al., 2014)

Key Idea of Attention

Experimental Results: PTB Test Section

Parsing F1

Model	Parsing F1
Baseline RNNG	93.3
Stack-only RNNG	93.6
Gated-Attention RNNG (stack-only)	93.5

LM Ppl.

Model	LM Pp
Sequential LSTM	113.4
Baseline RNNG	105.2
Stack-only RNNG	101.2
Gated-Attention RNNG (stack-only)	100.9

Two Extreme Cases of Attention

Perplexity of the Attention Vectors

Perplexity of Learned Attention vs Uniform

Learned Attention Vectors

the (0.0) final (0.18) hour (0.81) their (0.0) first (0.23) **test (0.77)** NP (0.01), (0.0) and (0.98) NP (0.01)

- Apple (0.62), (0.02) Compaq (0.1) and (0.01) IBM (0.25)

- Noun Phrases

Learned Attention Vectors

Verb Phrases to (0.99) VP (0.01) did (0.39) n't (0.60) VP (0.01) handle (0.09) NP (0.91)

VP (0.15) and (0.83) VP (0.02)

of (0.97) NP (0.03) in (0.93) NP (0.07) **by (0.96)** S (0.04)

Learned Attention Vectors

Prepositional Phrases NP (0.1) after (0.83) NP (0.06)

Quantifying the Overlap with Head Rules

Quantifying the Overlap with Head Rules

Refe

Random baseline

Collins head rules

Stanford head rules

erence	UAS
	~28.6
	49.8
S	40.4

Question 2: Can the Model Learn Phrase Types?

Method: Ablate the nonterr data

Result: Nonterminal labels add very little, and the model learns something similar automatically

Method: Ablate the nonterminal label categories from the

Role of Nonterminals

Exploring the endocentric or exocentric hypothesis of phrasal representation

Endocentric: represent an NP with the noun headword

We use a data ablation procedure by replacing all nonterminal symbols with a single nonterminal category "X"

- Exocentric: $S \rightarrow NP VP$ (relabel NP and VP with a new syntactic category "S")

Nonterminal Ablation

(S (NP the hungry cat) (VP meows) .)

(X (X the hungry cat) (X meows) .)

Quantitative Results Gold: (X (X the hu Predicted: (X (X the

Gold: (X (X the hungry cat) (X meows) .)

Predicted: (X (X the hungry) (X cat meows) .)

Quantitative Results Gold: (X (X the hungry cat) (X meows).) Predicted: (X (X the hungry) (X cat meows).)

PTB Unlabeled Bracketing F1

PTB Unlabeled Bracketing F1

Visualization

Conclusion

- distinct to linguistic theories
- bracketing structures, and also make nontrivial semantic distinctions

RNNG learns (imperfect) headedness, which is both similar and

RNNG is able to rediscover nonterminal information given weak

On-the-fly Operation Batching in Dynamic Computation Graphs Graham Neubig, Yoav Goldberg, Chris Dyer

NIPS 2017

Efficiency Tricks: Mini-batching

- On modern hardware 10 operations of size 1 is much slower than 1 operation of size 10
- Minibatching combines together smaller operations into one big one

Minibatching

<u>Operations w/o Minibatching</u> W x₁ b

Operations with Minibatching

Manual Mini-batching

- In language processing tasks, you need to:
 - sentences by length)
 - and loss functions

• Group sentences into a mini batch (optionally, for efficiency group)

Select the "t"th word in each sentence, and send them to the lookup

- Dynamic graph toolkit implemented in C++, usable from C++, Python, Scala/Java
- Very fast on CPU (good for prototyping NLP apps!), similar support to other toolkits for GPU
- Support for on-the-fly batching, implementation of minibatching, even in difficult situations

Inc

The Dynamic Neural Network Toolkit

Mini-batched Code Example

- 1 # in_words is a tuple (word_1, word_2)
- 2 # out_label is an output label
- $3 \text{ word}_1 = E[in_words[0]]$
- $4 \text{ word}_2 = E[in_words[1]]$
- 5 scores_sym = W*dy.concatenate([word_1, word_2])+b
- 6 loss_sym = dy.pickneglogsoftmax(scores_sym, out_label)

2 # out_labels is a list of output labels [label_1, label_2, ...] 3 word_1_batch = dy.lookup_batch(E, [x[0] for x in in_words]) 4 word_2_batch = dy.lookup_batch(E, [x[1] for x in in_words]) 5 scores_sym = W*dy.concatenate([word_1_batch, word_2_batch])+b

(b) Minibatched classification.

(a) Non-minibatched classification.

```
1 # in_words is a list [(word_{1,1}, word_{1,2}), (word_{2,1}, word_{2,2}), ...]
6 loss_sym = dy.sum_batches( dy.pickneglogsoftmax_batch(scores_sym, out_labels) )
```

But What about These?

Documents

← This film was completely unbelievable. ► The characters were wooden and the plot was absurd. ●●●● *That being said, I liked it.*

Automatic Mini-batching!

- TensorFlow Fold (complicated combinators)

DyNet Autobatch (basically effortless implementation)

Autobatching Algorithm

- for each minibatch:
 - for each data point in mini-batch:
 - define/add data
 - sum losses
 - forward (autobatch engine does magic!)
 - backward
 - update

Speed Improvements

Task	CPU			GPU		
	NOAUTO	ByDepth	BYAGENDA	NOAUTO	ByDepth	ByAgenda
BiLSTM	16.8	139	156	56.2	337	367
BiLSTM w/ char	15.7	93.8	132	43.2	183	275
TreeLSTM	50.2	348	357	76.5	672	661
Transition-Parsing	16.8	61.0	61.2	33.0	89.5	90.1

Table 1: Sentences/second on various training tasks for increasingly challenging batching scenarios.

Conclusion

Neural Networks as Science

- We all know that neural networks are great for engineering; accuracy gains are undeniable
- But can we also use them as our partners in science?
- Design a net, ask it questions, and see if it's answers surprise you!

Questions?