Simple and Efficient
|_earning with Automatic
Operation Batching

(Graham NeUblg /::;\ Carnegie Mellon University

Language Technologies Institute

joint work w/ Yoav Goldberg and Chris Dyer

. http://dynet.io/autobatch/
M ay n6 https://github.com/neubig/howtocode-2017

http://dynet.io/autobatch/
https://github.com/neubig/howtocode-2017

Neural Networks w/
Complicated Structures

Words Sentences

LSTM over

(]
A
b J

CJ
h J

L]
) J

]

—)
Word cat - -
ambedding)
LSTM cver rool " > },-'-" ,
+ morphemes ||)

PP
/N

Alice gave a message to Bob

Phrases Dynamic Decisions

o a=1

R a=1 a=2
\
0000
/ A \ \ \/
7/ l | Pl i . . .
/4499 ‘ O
' (. nellhungryl car)| WP

Neural Net Programming
Paradigms

What is Necessary for
Neural Network Training

* define computation

 add data

* calculate result (forward)

* calculate gradients (backward)

* update parameters

Paradigm 1: Static Graphs
(Tensortlow, Theano)

 define

* for each data point:
* add data

- forward

- backward

- update

Advantages/Disadvantages
of Static Graphs

- Advantages:

e Can be optimized at definition time

 Easy to feed data to GPUSs, etc., via data iterators
- Disadvantages:

 Difficult to implement nets with varying structure (trees,
graphs, flow control)

 Need to learn big API that implements flow control in the
‘graph” language

Paradigm 2;
Dynamic+kEager tvaluation
(PyTorch, Chainer)

* for each data point:
 define/add data/forward
- backward

- update

Advantages/Disadvantages
of Dynamic+Eager Evaluation

- Advantages:

* Easy to implement nets with varying structure,
APl is closer to standard Python/C++

* Easy to debug because errors occur immediately
- Disadvantages:
* Cannot be optimized at definition time

* Hard to serialize graphs w/o program logic,
decide device placement, etc.

Paradigm 3:
Dynamic+Lazy Evaluation (DyNet)

* for each data point:
* define/add data
* forward
- backward

- update

Advantages/Disadvantages
of Dynamic+Lazy Evaluation

- Advantages:

 Easy to implement nets with varying structure,
APl is closer to standard Python/C++

« Can be optimized at definition time (this
presentation!)

- Disadvantages:
 Harder to debug because errors occur immediately

« Still hard to serialize graphs w/o program logic,
decide device placement, etc.

Efficiency Tricks:
Operation Batching

Efficiency Tricks:
Mini-patching

* On modern hardware 10 operations of size 1 is
much slower than 1 operation of size 10

* Minibatching combines together smaller operations
INto one big one

Minibatching

Operations w/o Minibatching

le

tanh(eee® @ +

000

b
®
®

@

) tanh(eee

Operations with Minibatching

W

X, X, X, > concat [

tanh(eee®

W
000

E::x

b W

+ g) tanh(eee

,~ | broadcast <— b
B

Manual Mini-batching

 DyNet has special minibatch operations for lookup
and loss functions, everything else automatic

e You need to:

* (Group sentences into a mini batch (optionally, for
efficiency group sentences by length)

e Select the “t"th word in each sentence, and send
them to the lookup and loss functions

Example Task: Sentiment

good
neutral
bad

. . —»very bad
| hate this movie —

good

neutral

bad

very bad
Iove this movie

good
neutral
/ bad

| do n't hate this movie very bad

Continuous Bag of Words
(CBOW)

hate this movie

Cookup) (ookun) (1ookup) (fookup)

+ + +

£ED an

2 b < b <

% - -

W |8 + e = @
=

2 - -

bias scores

Batching CBOW

love that movie
| hate this | movie

God) (@) (k) (@)

Mini-batched Code Example

in_words 1s a tuple (word_1, word_2)

out_label 1s an output label

word_1 = E[in_words[0]]

word_2 = E[in_words[1]]

; scores_sym = W*dy.concatenate([word_1, word_2])+b
loss_sym = dy.pickneglogsoftmax(scores_sym, out_label)

(a) Non-minibatched classification.

in_words 1s a list [(word_{1,1}, word_{1,2}), (word_{2,1}, word_{2,2}), ...]
out_labels is a list of output labels [label_1, label_2, ...J]

s word_1_batch = dy.lookup_batch(E, [x[0] for x in in_words])

word_2_batch = dy.lookup_batch(E, [x[1] for x in in_words])

; scores_sym = W+dy.concatenate([word_1_batch, word_2_batch])+b

loss_sym = dy.sum_batches(dy.pickneglogsoftmax_batch(scores_sym, out_labels))

(b) Minibatched classification.

Mini-batching Sequences

this Is an example </s>
this is another </s> </s>
Paddin
| oss VoL ¢ ¢ J
1 1 1 1 1
Calculation “SHE-CHE-EE 2 500
} | | | ' Mask
J J J J J
_J J J _J
— = L

Take Sum

Bi-directional LSTM

hate this movie

|
l ! l l

T

bias scores

Tree-structured RNN/LSTM

| hate this movie

! ! ! !

@b e e e

[V'VY‘
s

Y N
b b
< _ b
< T <
b b

bias scores

And What About These?

Words Sentences
- :

s morphemos 8 'U 'U""' /\

smow o000 '; PP

. N\
Alice gave a message to Bob
Phrases Dynamic Decisions
i a=1 a=1 a=2
.-—.—Q-—.-—QJ
daaane -; % j,, Ze+ j; Z& -_/,

| [we] [7nellhuner 'ul| y | |me

Automatic Operation
Batching

Automatic Mini-batching!

Three input sequences,
different lengths.

* |nnovatd by TensorFlow Fold (faster than unbatched, but
implementation relatively complicated)

 DyNet Autobatch (basically effortless implementation)

Programming Paradigm

Just write a for loop!

for minibatch in training data: ‘l
loss values = []
‘for X, yV 1n minibatch:
.~ loss values append(calculate loss(

l“
;oss sum =

~ —_—— _—

| j |
,“oss sum. backwa;d(lg
trainer.update () “k\“

Batching occurs here

Under the Hood

 Each node has “profile”, same profile = batchable

o Batch and execute items with their dependencies satisfied

RN~ RAN /RN~ RN~ [RIN RNN = RNN = RNN = L (R [F RN RN L
} $ § } f\‘ A 'S N ¥ i 1 ¥ ?‘\‘
RNN =~ RNN - L » Sum o - IRNN P RNN - L > SUM:
N - |RNN +# RNN - L > SUM |
Bk t 4 el I—§— 'Y a1 4 el
RNN b RNN - RNN - L~ iy g RNN B RNNT RNNE- L7

[RNNJ>[RNN+[RNN]~RNN~L [RNN|~[RNN|-[RNN{RNN]~ L RNN |~ RNN [~ RNN |~ RNN ~ |
t f N f J } — N f f f t

RNN [~[RNN ~ L > sum_ |RNN (> RNN{~L | »sum | |[RNN = RNN(-L| = sum
i e i 7 T A
RNN |~{RNN] ~[RNN]~ L1 'RNN b-[RNN B/ RNN - L RNN -[RNN-[RNN]-{L |~
’ * I B B N B

. inotready| |onagenda|]executing| |done

Challenges

This goes In your training loop:
must be blazing fast!

DyNet's C++ implementation is highly optimized
 Profiles stored as hash functions

* Minimize memory allocation overhead

wfo Manual

w/ Manual

A

A

Synthetic Experiments

Fixed-length RNN — ideal case for manual batching

CPU ms/ sent

W for graph W for calc

0O 20 40 60 80 100

ow close can we get?

back grapn mback calc mupdate
120 140 160 180 200

No

e T

Eipm Il s e

Avenca T | D ——

'NO

ac IR | [

By

Uepth iH | s

\Agenda I. - _
‘—Q;4 6 8 10 12 14 16 18 20

wia Manual

w/ Manual

GPU ms/ sent

m for graph mfor calc

0 2C 40 60 80 100

back graph ®™back calc mupdate
120 140 160 180 200

o, |
P));pth I Bl
agenda | ||
Moo 1 |
peoth | I 1
enca || | I
_Q—Z'tl 6 8 10 12 14 16 1B 20

Real NLP Tasks

* Variably Lengthed RNN, RNN w/ character
embeddings, tree LSTM, dependency parser

Task CPU GPU

NOAuTO BYDEPTH BYAGENDA | NOAUTO BYDEPTH BYAGENDA
BiLSTM 16.8 139 156 56.2 337 367
Bil.STM w/ char 15.7 03.8 132 432 183 275
TreeLSTM 50.2 348 357 76.5 672 6061
Transition-Parsing 16.8 61.0 61.2 330 89.5 90.1

| et’s Try it Out!

http://dynet.io/autobatch/

https://github.com/neubig/howtocode-2017

http://dynet.io/autobatch/
https://github.com/neubig/howtocode-2017

