Simple and Efficient Learning with Automatic Operation Batching

Graham Neubig

in dy/net

joint work w/ Yoav Goldberg and Chris Dyer

http://dynet.io/autobatch/
https://github.com/neubig/howtocode-2017
Neural Networks w/ Complicated Structures

Words

Sentences

Phrases

Dynamic Decisions

Alice gave a message to Bob
Neural Net Programming Paradigms
What is Necessary for Neural Network Training

- **define** computation
- **add** data
- calculate result (**forward**)
- calculate gradients (**backward**)
- **update** parameters
Paradigm 1: Static Graphs (Tensorflow, Theano)

- define

- for each data point:
 - add data
 - forward
 - backward
 - update
Advantages/Disadvantages of Static Graphs

- **Advantages:**
 - Can be optimized at definition time
 - Easy to feed data to GPUs, etc., via data iterators

- **Disadvantages:**
 - Difficult to implement nets with varying structure (trees, graphs, flow control)
 - Need to learn big API that implements flow control in the “graph” language
Paradigm 2: Dynamic+Eager Evaluation (PyTorch, Chainer)

• for each data point:
 • define/add data/forward
 • backward
 • update
Advantages/Disadvantages of Dynamic+Eager Evaluation

- **Advantages:**
 - Easy to implement nets with varying structure, API is closer to standard Python/C++
 - Easy to debug because errors occur immediately

- **Disadvantages:**
 - Cannot be optimized at definition time
 - Hard to serialize graphs w/o program logic, decide device placement, etc.
Paradigm 3: Dynamic+Lazy Evaluation (DyNet)

- for each data point:
 - define/add data
 - forward
 - backward
 - update
Advantages/Disadvantages of Dynamic+Lazy Evaluation

- **Advantages:**
 - Easy to implement nets with varying structure, API is closer to standard Python/C++
 - Can be optimized at definition time (this presentation!)

- **Disadvantages:**
 - Harder to debug because errors occur immediately
 - Still hard to serialize graphs w/o program logic, decide device placement, etc.
Efficiency Tricks: Operation Batching
Efficiency Tricks: Mini-batching

- On modern hardware 10 operations of size 1 is much slower than 1 operation of size 10

- Minibatching combines together smaller operations into one big one
Minibatching

Operations w/o Minibatching

\[
\tanh(W \times_1 + b) \quad \tanh(W \times_2 + b) \quad \tanh(W \times_3 + b)
\]

Operations with Minibatching

\[
x_1 \times_2 \times_3 \rightarrow \text{concat} \rightarrow W \times X \rightarrow \text{broadcast} \rightarrow b
\]

\[
\tanh(W \times X + b)
\]
Manual Mini-batching

• DyNet has special minibatch operations for lookup and loss functions, everything else automatic

• You need to:
 • Group sentences into a mini batch (optionally, for efficiency group sentences by length)
 • Select the “t”th word in each sentence, and send them to the lookup and loss functions
Example Task: Sentiment

I hate this movie

I love this movie

I don't hate this movie

very good

very good

very bad

very bad
Continuous Bag of Words (CBOW)

\[I + hate + this + movie = \text{scores} \]
I hate this movie + love + that movie
Mini-batched Code Example

```python
# in_words is a tuple (word_1, word_2)
# out_label is an output label
word_1 = E[in_words[0]]
word_2 = E[in_words[1]]

scores_sym = W*dy.concatenate([word_1, word_2])+b
loss_sym = dy.pickneglogsoftmax(scores_sym, out_label)
```

(a) Non-minibatched classification.

```python
# in_words is a list [(word_{1,1}, word_{1,2}), (word_{2,1}, word_{2,2}), ...]
# out_labels is a list of output labels [label_1, label_2, ...]
word_1_batch = dy.lookup_batch(E, [x[0] for x in in_words])
word_2_batch = dy.lookup_batch(E, [x[1] for x in in_words])

scores_sym = W*dy.concatenate([word_1_batch, word_2_batch])+b
loss_sym = dy.sum_batches( dy.pickneglogsoftmax_batch(scores_sym, out_labels) )
```

(b) Minibatched classification.
Mini-batching Sequences

this is an example</s>
this is another</s>

Loss Calculation

Padding

Mask

Take Sum
Bi-directional LSTM

I hate this movie

\[W + \text{bias} = \text{scores} \]
Tree-structured RNN/LSTM

I _hate_ this _movie_ + bias = scores

Diagram:

- Input: I, hate, this, movie
- Internal nodes: RNN
- Output: W, bias, scores
And What About These?

Words

Sentences

Phrases

Dynamic Decisions
Automatic Operation
Batching
Automatic Mini-batching!

- Innovated by TensorFlow Fold (faster than unbatched, but implementation relatively complicated)
- DyNet Autobatch (basically effortless implementation)
for minibatch in training_data:
 loss_values = []
 for x, y in minibatch:
 loss_values.append(calculate_loss(x, y))
 loss_sum = sum(loss_values)
 loss_sum.forward()
 loss_sum.backward()
 trainer.update()
Under the Hood

• Each node has “profile”, same profile \rightarrow batchable

• Batch and execute items with their dependencies satisfied
Challenges

• This goes in your training loop: **must be blazing fast!**

• DyNet’s C++ implementation is highly optimized
 • Profiles stored as hash functions
 • Minimize memory allocation overhead
Synthetic Experiments

- Fixed-length RNN → ideal case for manual batching
- How close can we get?
Real NLP Tasks

- Variably Lengthed RNN, RNN w/ character embeddings, tree LSTM, dependency parser

<table>
<thead>
<tr>
<th>Task</th>
<th>CPU NOAUTO</th>
<th>CPU BYDEPTH</th>
<th>CPU BYAGENDA</th>
<th>GPU NOAUTO</th>
<th>GPU BYDEPTH</th>
<th>GPU BYAGENDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiLSTM</td>
<td>16.8</td>
<td>139</td>
<td>156</td>
<td>56.2</td>
<td>337</td>
<td>367</td>
</tr>
<tr>
<td>BiLSTM w/ char</td>
<td>15.7</td>
<td>93.8</td>
<td>132</td>
<td>43.2</td>
<td>183</td>
<td>275</td>
</tr>
<tr>
<td>TreeLSTM</td>
<td>50.2</td>
<td>348</td>
<td>357</td>
<td>76.5</td>
<td>672</td>
<td>661</td>
</tr>
<tr>
<td>Transition-Parsing</td>
<td>16.8</td>
<td>61.0</td>
<td>61.2</td>
<td>33.0</td>
<td>89.5</td>
<td>90.1</td>
</tr>
</tbody>
</table>
Let’s Try it Out!

http://dynet.io/autobatch/

https://github.com/neubig/howtocode-2017