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Neural Networks w/ 
Complicated Structures
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Neural Net Programming 
Paradigms



What is Necessary for 
Neural Network Training

• define computation 

• add data 

• calculate result (forward) 

• calculate gradients (backward) 

• update parameters



Paradigm 1: Static Graphs 
(Tensorflow, Theano)

• define 

• for each data point: 

• add data 

• forward

• backward 

• update



Advantages/Disadvantages 
of Static Graphs

• Advantages:

• Can be optimized at definition time 

• Easy to feed data to GPUs, etc., via data iterators 

• Disadvantages:

• Difficult to implement nets with varying structure (trees, 
graphs, flow control) 

• Need to learn big API that implements flow control in the 
“graph” language



Paradigm 2:  
Dynamic+Eager Evaluation 

(PyTorch, Chainer)

• for each data point: 

• define/add data/forward 

• backward 

• update



Advantages/Disadvantages 
of Dynamic+Eager Evaluation
• Advantages:

• Easy to implement nets with varying structure, 
API is closer to standard Python/C++ 

• Easy to debug because errors occur immediately 
• Disadvantages:

• Cannot be optimized at definition time 
• Hard to serialize graphs w/o program logic, 

decide device placement, etc.



Paradigm 3:  
Dynamic+Lazy Evaluation (DyNet)

• for each data point: 

• define/add data

• forward 

• backward 

• update



Advantages/Disadvantages 
of Dynamic+Lazy Evaluation
• Advantages:

• Easy to implement nets with varying structure, 
API is closer to standard Python/C++ 

• Can be optimized at definition time (this 
presentation!) 

• Disadvantages:
• Harder to debug because errors occur immediately 
• Still hard to serialize graphs w/o program logic, 

decide device placement, etc.



Efficiency Tricks:  
Operation Batching



Efficiency Tricks:  
Mini-batching

• On modern hardware 10 operations of size 1 is 
much slower than 1 operation of size 10 

• Minibatching combines together smaller operations 
into one big one



Minibatching



Manual Mini-batching
• DyNet has special minibatch operations for lookup 

and loss functions, everything else automatic 

• You need to: 

• Group sentences into a mini batch (optionally, for 
efficiency group sentences by length) 

• Select the “t”th word in each sentence, and send 
them to the lookup and loss functions



Example Task: Sentiment

I   hate   this  movie

I   love   this   movie

I do n’t hate this movie

very good 
good 

neutral 
bad 

very bad

very good 
good 

neutral 
bad 

very bad

very good 
good 

neutral 
bad 

very bad



Continuous Bag of Words 
(CBOW)

I hate this movie

+

bias

=

scores

+ + +

lookup lookup lookuplookup

W

=



I

Batching CBOW

I hate this movie

+ + +

lookup lookup lookuplookup

love that movie



Mini-batched Code Example



Mini-batching Sequences
this     is   an          example  </s>
this     is   another  </s> </s>

Padding
Loss 
Calculation

Mask

1 
1� 1 

1� 1 
1� 1 

1� 1 
0�

Take Sum



Bi-directional LSTM
I hate this movie

+

bias

=

scores

W

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

concat



Tree-structured RNN/LSTM
I hate this movie

+

bias

=

scores

W

RNN

RNN

RNN



And What About These?

Phrases

Words Sentences

Alice gave a message to Bob
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Dynamic Decisions
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Automatic Operation 
Batching



Automatic Mini-batching!

• Innovatd by TensorFlow Fold (faster than unbatched, but 
implementation relatively complicated) 

• DyNet Autobatch (basically effortless implementation)



Programming Paradigm

for minibatch in training_data: 
  loss_values = [] 
  for x, y in minibatch: 
    loss_values.append(calculate_loss(x,y)) 
  loss_sum = sum(loss_values) 
  loss_sum.forward() 
  loss_sum.backward() 
  trainer.update() 

Just write a for loop!

Batching occurs here



Under the Hood
• Each node has “profile”, same profile → batchable 

• Batch and execute items with their dependencies satisfied



Challenges

• This goes in your training loop:  
must be blazing fast!

• DyNet’s C++ implementation is highly optimized 

• Profiles stored as hash functions 

• Minimize memory allocation overhead



Synthetic Experiments
• Fixed-length RNN → ideal case for manual batching 

• How close can we get?



Real NLP Tasks
• Variably Lengthed RNN, RNN w/ character 

embeddings, tree LSTM, dependency parser



Let’s Try it Out!
http://dynet.io/autobatch/

https://github.com/neubig/howtocode-2017

http://dynet.io/autobatch/
https://github.com/neubig/howtocode-2017

