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Neural Networks w/
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Neural Net Programming
Paradigms



What is Necessary for
Neural Network Training

* define computation

 add data

* calculate result (forward)

* calculate gradients (backward)

* update parameters



Paradigm 1: Static Graphs
(Tensortlow, Theano)

 define

* for each data point:
* add data

- forward

- backward

- update



Advantages/Disadvantages
of Static Graphs

- Advantages:

e Can be optimized at definition time

 Easy to feed data to GPUSs, etc., via data iterators
- Disadvantages:

 Difficult to implement nets with varying structure (trees,
graphs, flow control)

 Need to learn big API that implements flow control in the
‘graph” language



Paradigm 2;
Dynamic+kEager tvaluation
(PyTorch, Chainer)

* for each data point:
 define/add data/forward
- backward

- update



Advantages/Disadvantages
of Dynamic+Eager Evaluation

- Advantages:

* Easy to implement nets with varying structure,
APl is closer to standard Python/C++

* Easy to debug because errors occur immediately
- Disadvantages:
* Cannot be optimized at definition time

* Hard to serialize graphs w/o program logic,
decide device placement, etc.



Paradigm 3:
Dynamic+Lazy Evaluation (DyNet)

* for each data point:
* define/add data
* forward
- backward

- update



Advantages/Disadvantages
of Dynamic+Lazy Evaluation

- Advantages:

 Easy to implement nets with varying structure,
APl is closer to standard Python/C++

« Can be optimized at definition time (this
presentation!)

- Disadvantages:
 Harder to debug because errors occur immediately

« Still hard to serialize graphs w/o program logic,
decide device placement, etc.



Efficiency Tricks:
Operation Batching



Efficiency Tricks:
Mini-patching

* On modern hardware 10 operations of size 1 is
much slower than 1 operation of size 10

* Minibatching combines together smaller operations
INto one big one



Minibatching

Operations w/o Minibatching

le

tanh(eee® @ +

000

b
®
®

@

) tanh(eee

Operations with Minibatching

W

X, X, X, > concat [

tanh(eee®

W
000

E::x

b W

+ g) tanh(eee

,~ | broadcast <— b
B




Manual Mini-batching

 DyNet has special minibatch operations for lookup
and loss functions, everything else automatic

e You need to:

* (Group sentences into a mini batch (optionally, for
efficiency group sentences by length)

e Select the “t"th word in each sentence, and send
them to the lookup and loss functions



Example Task: Sentiment
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Continuous Bag of Words
(CBOW)
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Batching CBOW
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Mini-batched Code Example

# in_words 1s a tuple (word_1, word_2)

# out_label 1s an output label

word_1 = E[in_words[0]]

word_2 = E[in_words[1]]

; scores_sym = W*dy.concatenate([word_1, word_2])+b
loss_sym = dy.pickneglogsoftmax(scores_sym, out_label)

(a) Non-minibatched classification.

# in_words 1s a list [(word_{1,1}, word_{1,2}), (word_{2,1}, word_{2,2}), ...]
# out_labels is a list of output labels [label_1, label_2, ...J]

s word_1_batch = dy.lookup_batch(E, [x[0] for x in in_words])

word_2_batch = dy.lookup_batch(E, [x[1] for x in in_words])

; scores_sym = W+dy.concatenate([word_1_batch, word_2_batch])+b

loss_sym = dy.sum_batches( dy.pickneglogsoftmax_batch(scores_sym, out_labels) )

(b) Minibatched classification.



Mini-batching Sequences
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Bi-directional LSTM
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Tree-structured RNN/LSTM
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And What About These?
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Automatic Operation
Batching



Automatic Mini-batching!

Three input sequences,
different lengths.

* |nnovatd by TensorFlow Fold (faster than unbatched, but
implementation relatively complicated)

 DyNet Autobatch (basically effortless implementation)



Programming Paradigm

Just write a for loop!

for minibatch in training data: ‘l
loss values = []
‘for X, yV 1n minibatch:
.~ loss values append(calculate loss(

l“
;oss sum =

~ —_—— _—

| j |
,“oss sum. backwa;d(lg
trainer.update () “k\“

Batching occurs here



Under the Hood

 Each node has “profile”, same profile = batchable

o Batch and execute items with their dependencies satisfied
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Challenges

This goes In your training loop:
must be blazing fast!

DyNet's C++ implementation is highly optimized
 Profiles stored as hash functions

* Minimize memory allocation overhead
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Real NLP Tasks

* Variably Lengthed RNN, RNN w/ character
embeddings, tree LSTM, dependency parser

Task CPU GPU

NOAuTO BYDEPTH BYAGENDA | NOAUTO BYDEPTH BYAGENDA
BiLSTM 16.8 139 156 56.2 337 367
Bil.STM w/ char 15.7 03.8 132 432 183 275
TreeLSTM 50.2 348 357 76.5 672 6061
Transition-Parsing 16.8 61.0 61.2 330 89.5 90.1




| et’s Try it Out!

http://dynet.io/autobatch/

https://github.com/neubig/howtocode-2017
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