
Simple and Efficient
Learning with Automatic

Operation Batching
Graham Neubig

http://dynet.io/autobatch/

joint work w/ Yoav Goldberg and Chris Dyer

in https://github.com/neubig/howtocode-2017

http://dynet.io/autobatch/
https://github.com/neubig/howtocode-2017

Neural Networks w/
Complicated Structures

Phrases

Words Sentences

Alice gave a message to Bob

PPNP

VP

VP

S

Dynamic Decisions
a=1 a=1 a=2

Neural Net Programming
Paradigms

What is Necessary for
Neural Network Training

• define computation

• add data

• calculate result (forward)

• calculate gradients (backward)

• update parameters

Paradigm 1: Static Graphs 
(Tensorflow, Theano)

• define

• for each data point:

• add data

• forward

• backward

• update

Advantages/Disadvantages
of Static Graphs

• Advantages:

• Can be optimized at definition time

• Easy to feed data to GPUs, etc., via data iterators

• Disadvantages:

• Difficult to implement nets with varying structure (trees,
graphs, flow control)

• Need to learn big API that implements flow control in the
“graph” language

Paradigm 2:  
Dynamic+Eager Evaluation 

(PyTorch, Chainer)

• for each data point:

• define/add data/forward

• backward

• update

Advantages/Disadvantages
of Dynamic+Eager Evaluation
• Advantages:

• Easy to implement nets with varying structure,
API is closer to standard Python/C++

• Easy to debug because errors occur immediately
• Disadvantages:

• Cannot be optimized at definition time
• Hard to serialize graphs w/o program logic,

decide device placement, etc.

Paradigm 3:  
Dynamic+Lazy Evaluation (DyNet)

• for each data point:

• define/add data

• forward

• backward

• update

Advantages/Disadvantages
of Dynamic+Lazy Evaluation
• Advantages:

• Easy to implement nets with varying structure, 
API is closer to standard Python/C++

• Can be optimized at definition time (this
presentation!)

• Disadvantages:
• Harder to debug because errors occur immediately
• Still hard to serialize graphs w/o program logic,

decide device placement, etc.

Efficiency Tricks:  
Operation Batching

Efficiency Tricks:  
Mini-batching

• On modern hardware 10 operations of size 1 is
much slower than 1 operation of size 10

• Minibatching combines together smaller operations
into one big one

Minibatching

Manual Mini-batching
• DyNet has special minibatch operations for lookup

and loss functions, everything else automatic

• You need to:

• Group sentences into a mini batch (optionally, for
efficiency group sentences by length)

• Select the “t”th word in each sentence, and send
them to the lookup and loss functions

Example Task: Sentiment

I hate this movie

I love this movie

I do n’t hate this movie

very good
good

neutral
bad

very bad

very good
good

neutral
bad

very bad

very good
good

neutral
bad

very bad

Continuous Bag of Words
(CBOW)

I hate this movie

+

bias

=

scores

+ + +

lookup lookup lookuplookup

W

=

I

Batching CBOW

I hate this movie

+ + +

lookup lookup lookuplookup

love that movie

Mini-batched Code Example

Mini-batching Sequences
this is an example </s>
this is another </s> </s>

Padding
Loss
Calculation

Mask

1 
1� 1 

1� 1 
1� 1 

1� 1 
0�

Take Sum

Bi-directional LSTM
I hate this movie

+

bias

=

scores

W

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

concat

Tree-structured RNN/LSTM
I hate this movie

+

bias

=

scores

W

RNN

RNN

RNN

And What About These?

Phrases

Words Sentences

Alice gave a message to Bob

PPNP

VP

VP

S

Dynamic Decisions
a=1 a=1 a=2

Automatic Operation
Batching

Automatic Mini-batching!

• Innovatd by TensorFlow Fold (faster than unbatched, but
implementation relatively complicated)

• DyNet Autobatch (basically effortless implementation)

Programming Paradigm

for minibatch in training_data:
 loss_values = []
 for x, y in minibatch:
 loss_values.append(calculate_loss(x,y))
 loss_sum = sum(loss_values)
 loss_sum.forward()
 loss_sum.backward()
 trainer.update()

Just write a for loop!

Batching occurs here

Under the Hood
• Each node has “profile”, same profile → batchable

• Batch and execute items with their dependencies satisfied

Challenges

• This goes in your training loop:  
must be blazing fast!

• DyNet’s C++ implementation is highly optimized

• Profiles stored as hash functions

• Minimize memory allocation overhead

Synthetic Experiments
• Fixed-length RNN → ideal case for manual batching

• How close can we get?

Real NLP Tasks
• Variably Lengthed RNN, RNN w/ character

embeddings, tree LSTM, dependency parser

Let’s Try it Out!
http://dynet.io/autobatch/

https://github.com/neubig/howtocode-2017

http://dynet.io/autobatch/
https://github.com/neubig/howtocode-2017

