Simple and Efficient Learning with Automatic **Operation Batching**

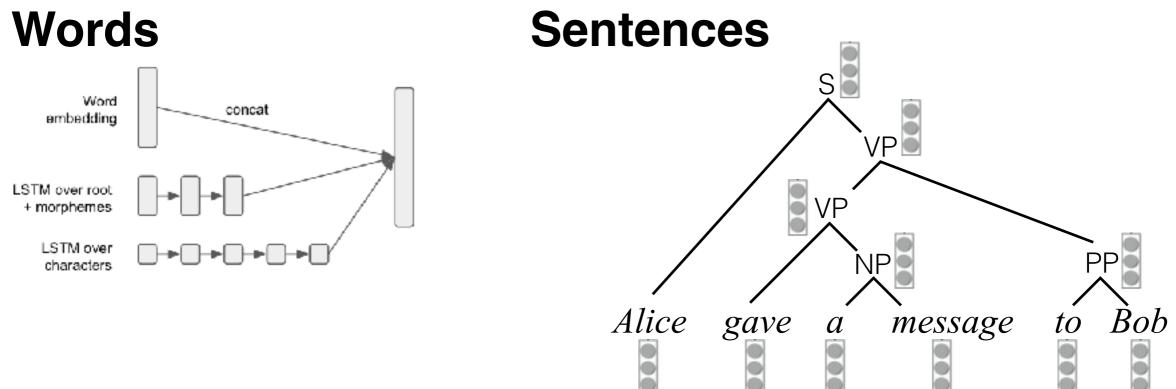
Graham Neubig

Carnegie Mellon University Language Technologies Institute

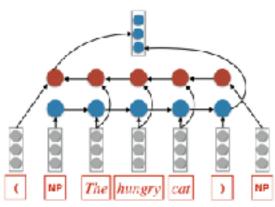
joint work w/ Yoav Goldberg and Chris Dyer

in J/net http://dynet.io/autobatch/

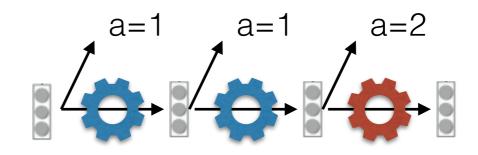
Neural Networks w/ Complicated Structures



Phrases



Dynamic Decisions



Neural Net Programming Paradigms

What is Necessary for Neural Network Training

- **define** computation
- add data
- calculate result (forward)
- calculate gradients (backward)
- **update** parameters

Paradigm 1: Static Graphs (Tensorflow, Theano)

- define
- for each data point:
 - add data
 - forward
 - backward
 - · update

Advantages/Disadvantages of Static Graphs

• Advantages:

- Can be optimized at definition time
- Easy to feed data to GPUs, etc., via data iterators

• Disadvantages:

- Difficult to implement nets with varying structure (trees, graphs, flow control)
- Need to learn big API that implements flow control in the "graph" language

Paradigm 2: Dynamic+Eager Evaluation (PyTorch, Chainer)

- for each data point:
 - define/add data/forward
 - backward
 - update

Advantages/Disadvantages of Dynamic+Eager Evaluation

· Advantages:

- Easy to implement nets with varying structure, API is closer to standard Python/C++
- Easy to debug because errors occur immediately

• Disadvantages:

- Cannot be optimized at definition time
- Hard to serialize graphs w/o program logic, decide device placement, etc.

Paradigm 3: Dynamic+Lazy Evaluation (DyNet)

- for each data point:
 - define/add data
 - forward
 - backward
 - · update

Advantages/Disadvantages of Dynamic+Lazy Evaluation

• Advantages:

- Easy to implement nets with varying structure, API is closer to standard Python/C++
- Can be optimized at definition time (this presentation!)

• Disadvantages:

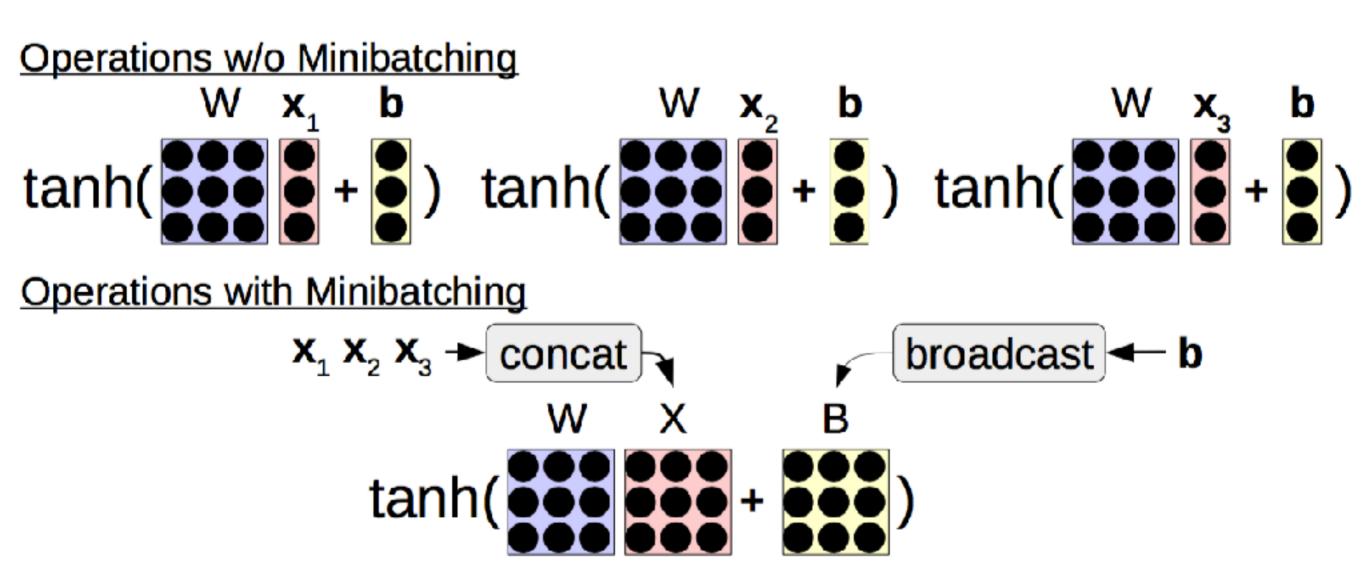
- Harder to debug because errors occur immediately
- Still hard to serialize graphs w/o program logic, decide device placement, etc.

Efficiency Tricks: Operation Batching

Efficiency Tricks: Mini-batching

- On modern hardware 10 operations of size 1 is much slower than 1 operation of size 10
- Minibatching combines together smaller operations into one big one

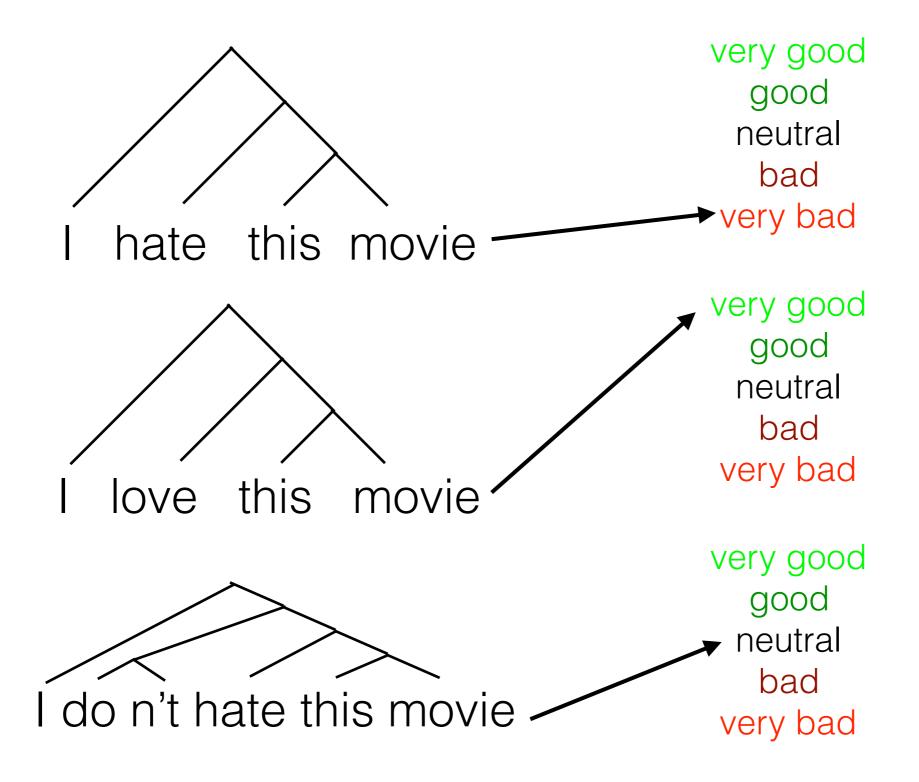
Minibatching



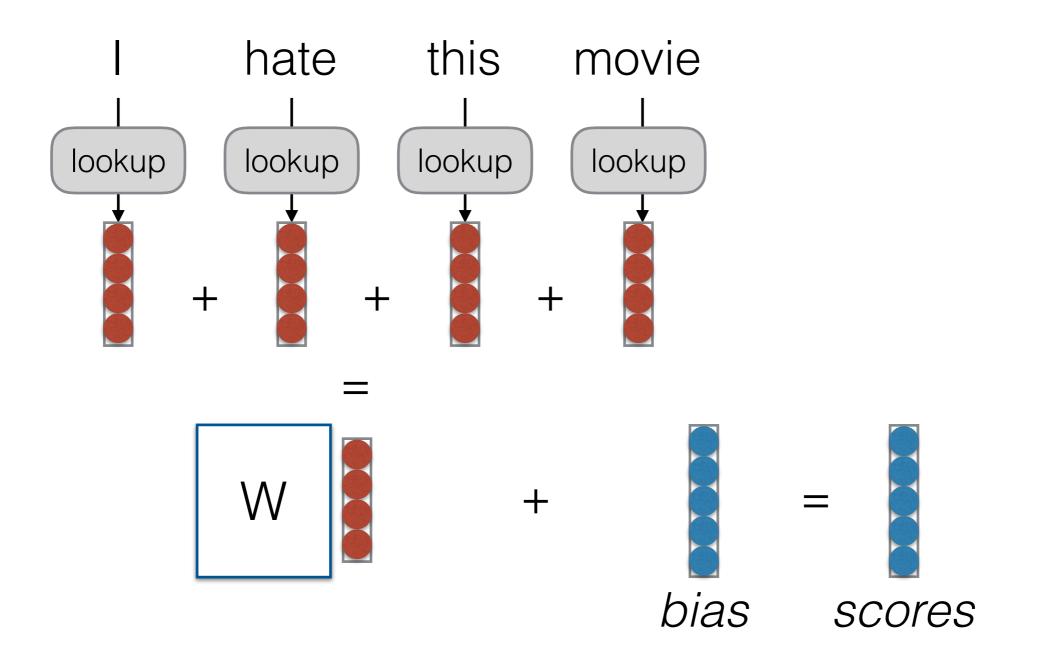
Manual Mini-batching

- DyNet has special minibatch operations for lookup and loss functions, everything else automatic
- You need to:
 - Group sentences into a mini batch (optionally, for efficiency group sentences by length)
 - Select the "t"th word in each sentence, and send them to the lookup and loss functions

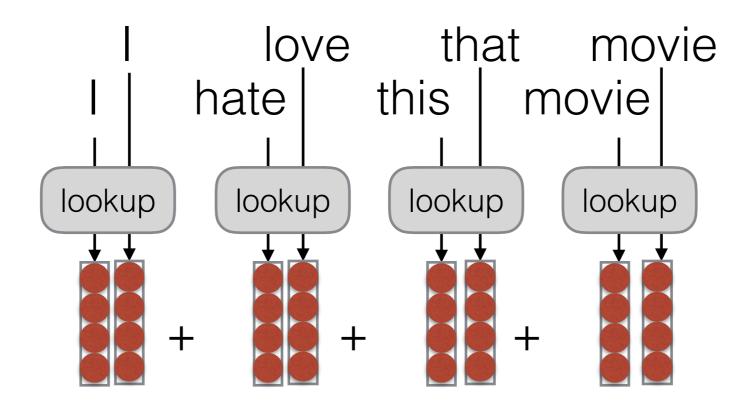
Example Task: Sentiment



Continuous Bag of Words (CBOW)



Batching CBOW



Mini-batched Code Example

```
1 # in_words is a tuple (word_1, word_2)
```

```
2 # out_label is an output label
```

```
3 \text{ word}_1 = E[\text{in}_words[0]]
```

```
4 \text{ word}_2 = E[\text{in}_words[1]]
```

```
5 scores_sym = W*dy.concatenate([word_1, word_2])+b
```

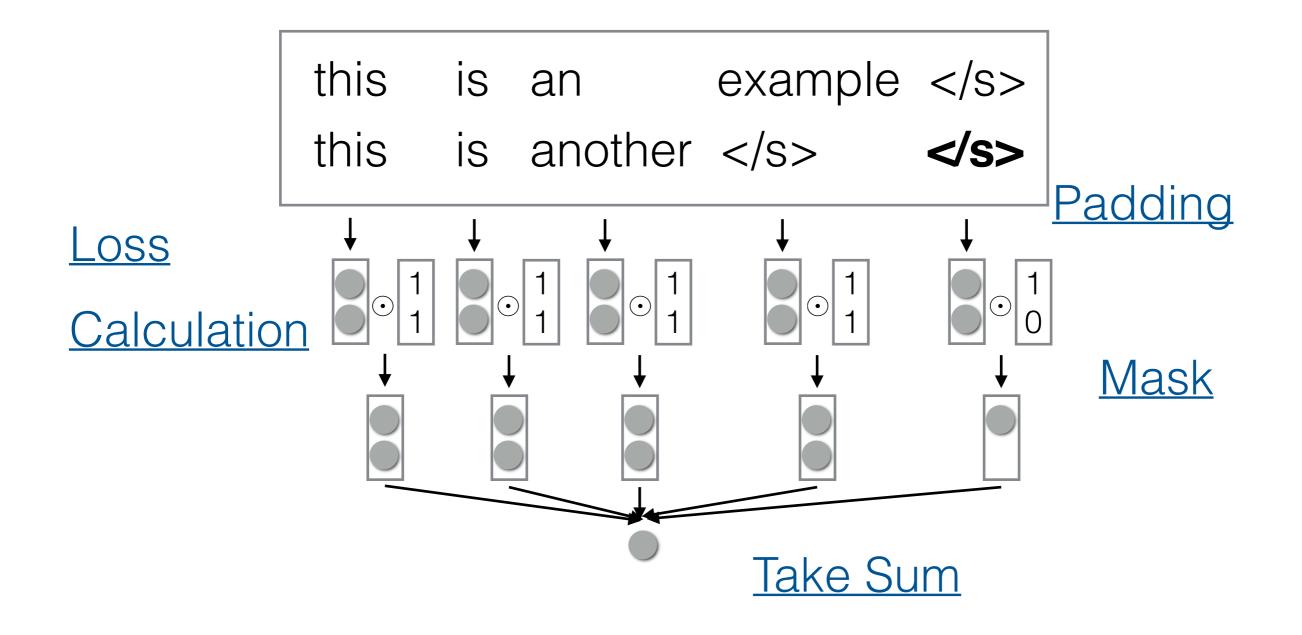
6 loss_sym = dy.pickneglogsoftmax(scores_sym, out_label)

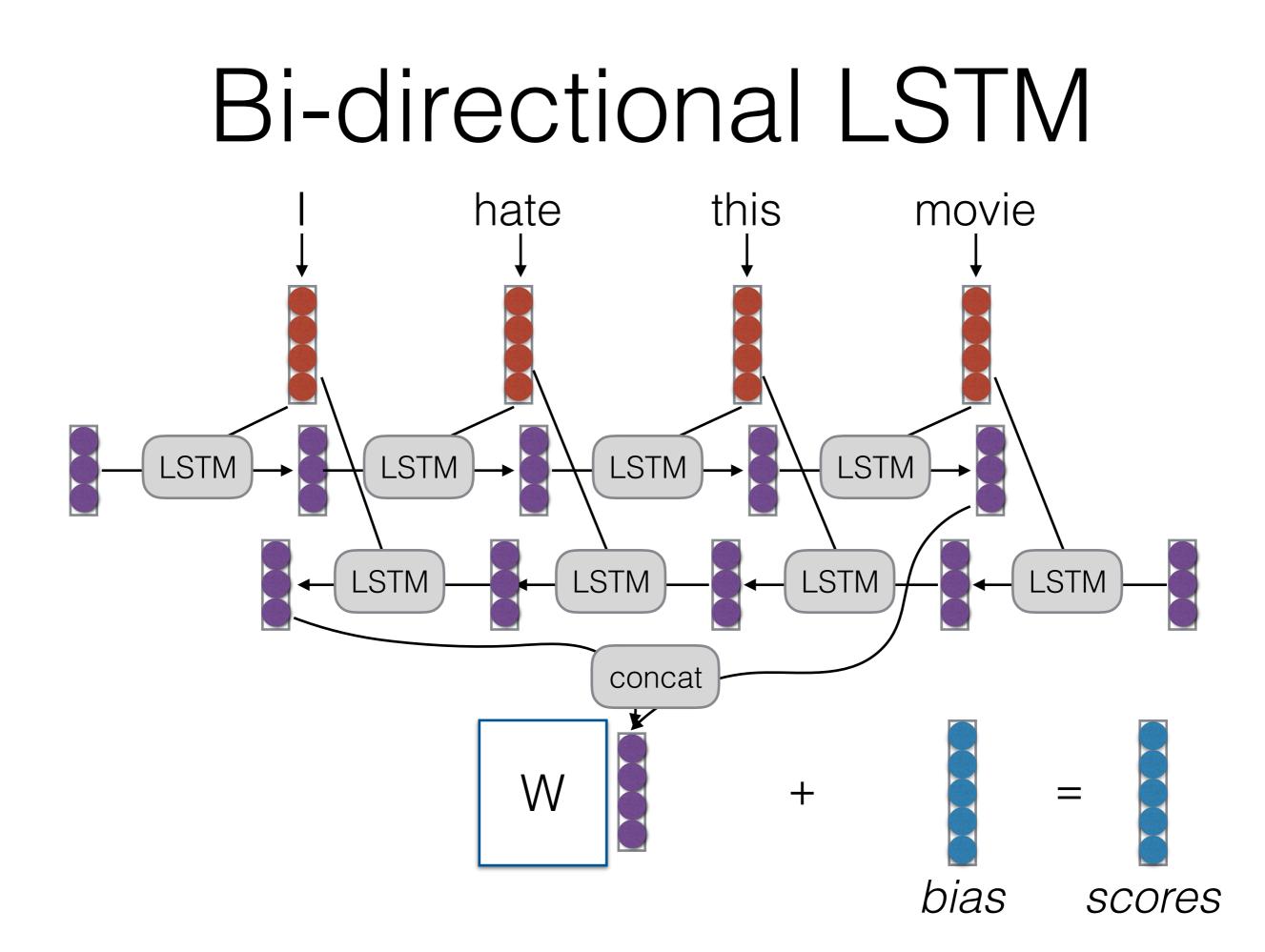
(a) Non-minibatched classification.

```
1 # in_words is a list [(word_{1,1}, word_{1,2}), (word_{2,1}, word_{2,2}), ...]
2 # out_labels is a list of output labels [label_1, label_2, ...]
3 word_1_batch = dy.lookup_batch(E, [x[0] for x in in_words])
4 word_2_batch = dy.lookup_batch(E, [x[1] for x in in_words])
5 scores_sym = W*dy.concatenate([word_1_batch, word_2_batch])+b
6 loss_sym = dy.sum_batches( dy.pickneglogsoftmax_batch(scores_sym, out_labels) )
```

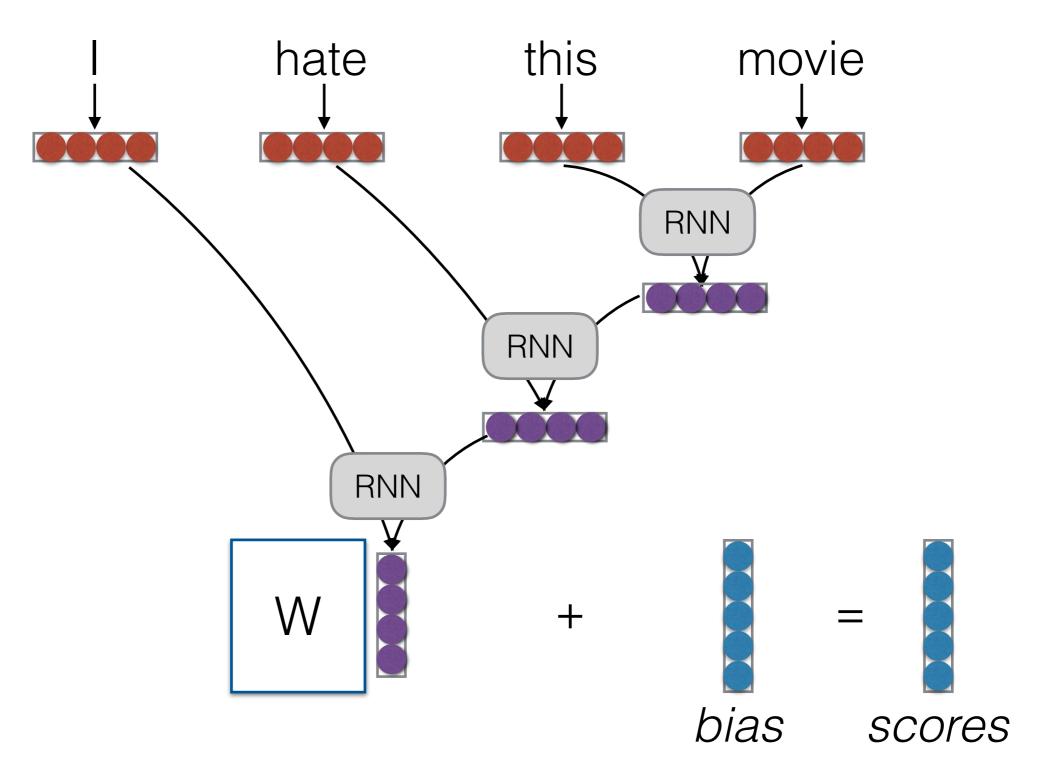
(b) Minibatched classification.

Mini-batching Sequences

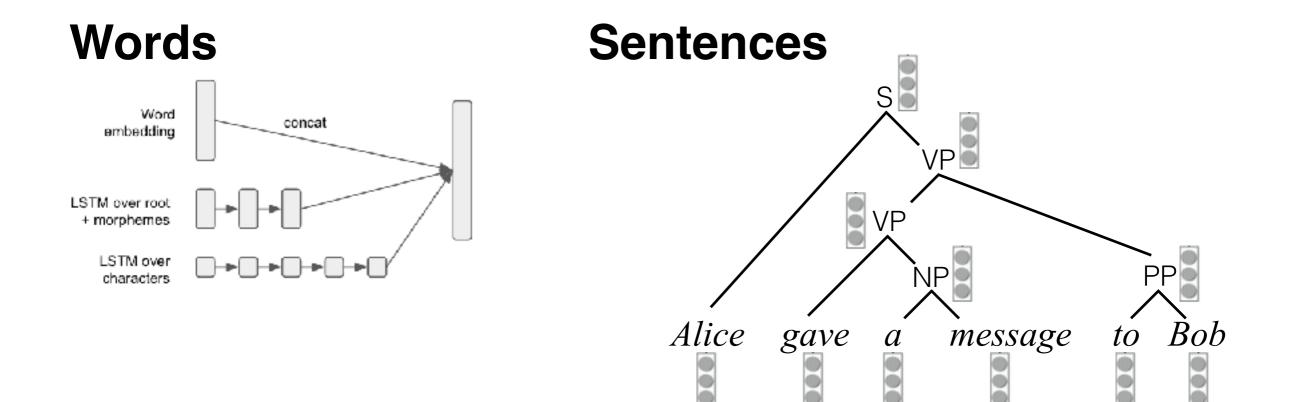


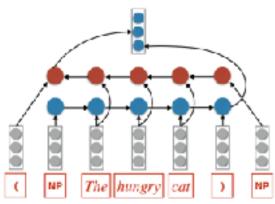


Tree-structured RNN/LSTM

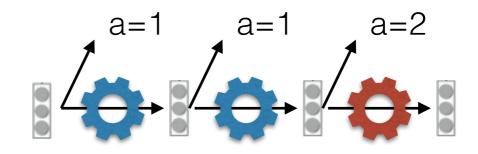


And What About These?



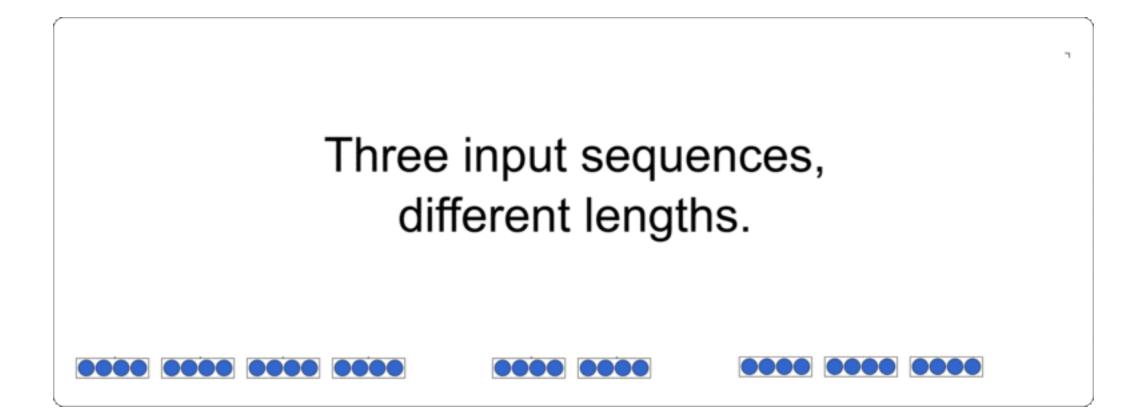


Dynamic Decisions



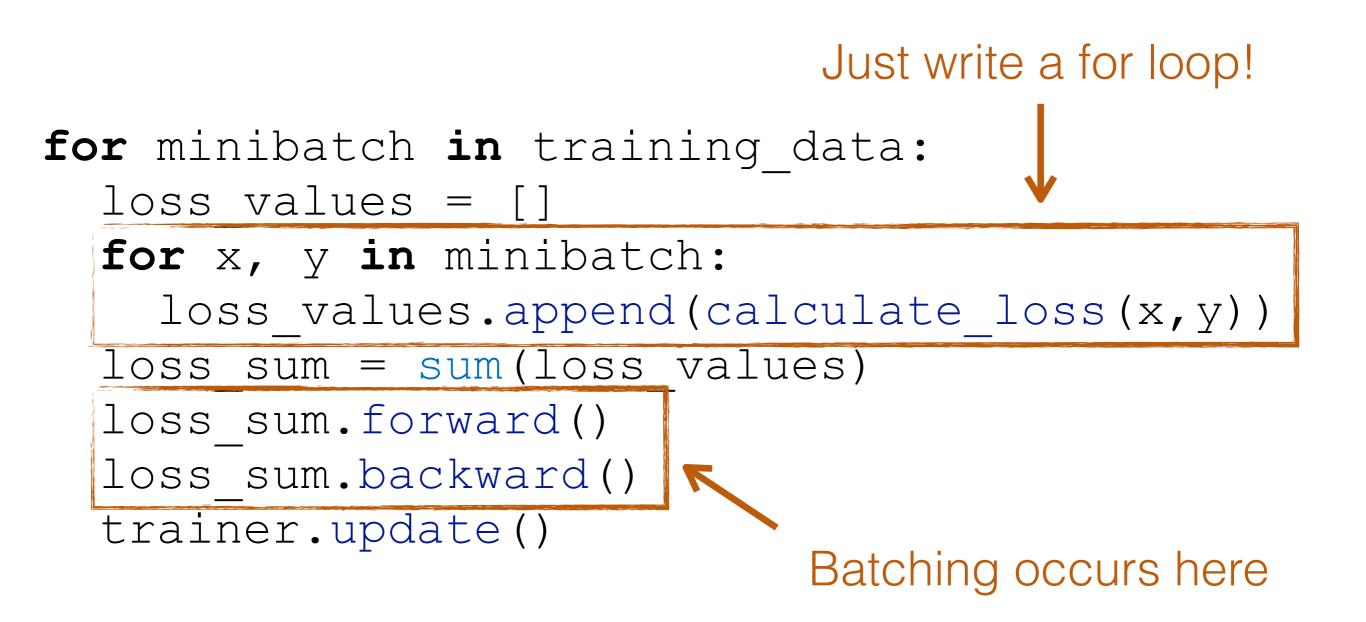
Automatic Operation Batching

Automatic Mini-batching!



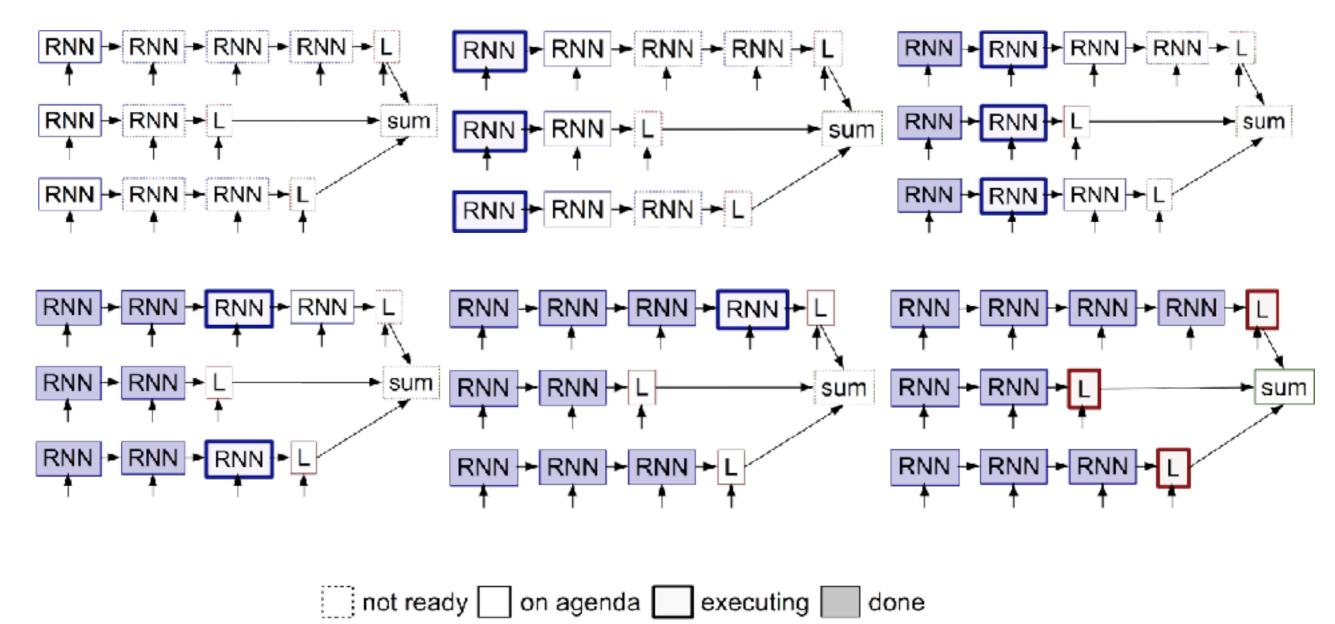
- Innovatd by TensorFlow Fold (faster than unbatched, but implementation relatively complicated)
- DyNet Autobatch (basically effortless implementation)

Programming Paradigm



Under the Hood

- Each node has "profile", same profile → batchable
- Batch and execute items with their dependencies satisfied

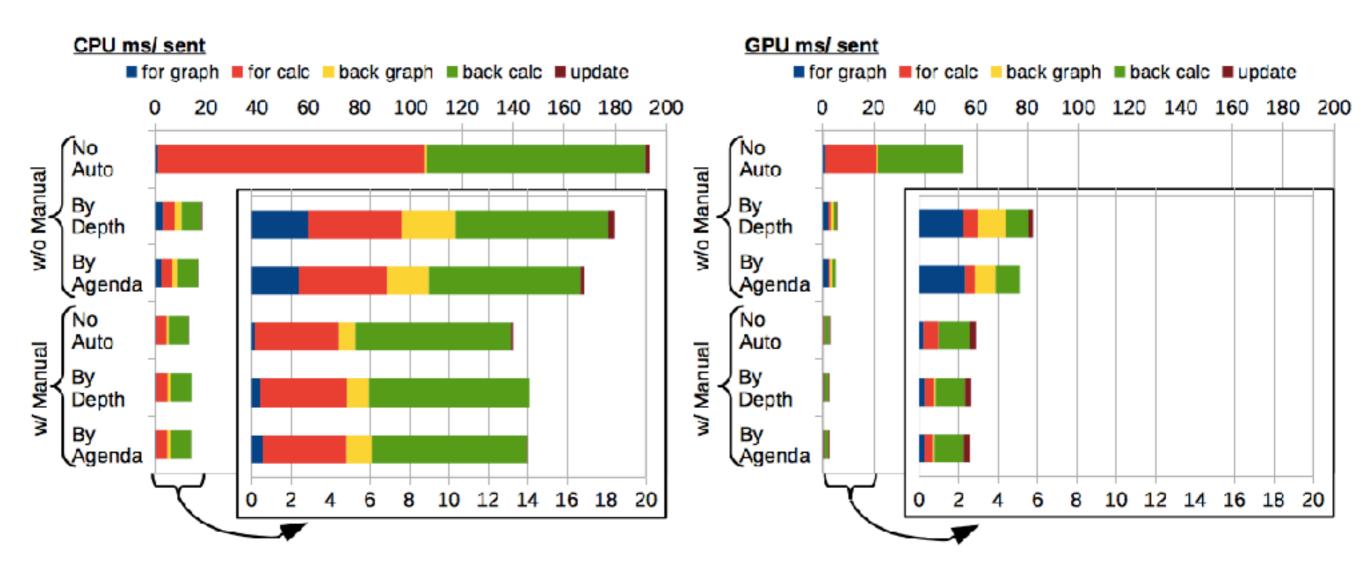


Challenges

- This goes in your training loop: must be blazing fast!
- DyNet's C++ implementation is highly optimized
 - Profiles stored as hash functions
 - Minimize memory allocation overhead

Synthetic Experiments

- Fixed-length RNN \rightarrow ideal case for manual batching
- How close can we get?



Real NLP Tasks

 Variably Lengthed RNN, RNN w/ character embeddings, tree LSTM, dependency parser

Task	CPU			GPU		
	NoAuto	ByDepth	BYAGENDA	ΝοΑυτο	ByDepth	BYAGENDA
BiLSTM	16.8	139	156	56.2	337	367
BiLSTM w/ char	15.7	93.8	132	43.2	183	275
TreeLSTM	50.2	348	357	76.5	672	661
Transition-Parsing	16.8	61.0	61.2	33.0	89.5	90.1

Let's Try it Out!

http://dynet.io/autobatch/

https://github.com/neubig/howtocode-2017