# Softmax Alternatives in Neural MT

Graham Neubig 5/24/2017



#### **Neural MT Models**



#### How we Calculate Probabilities



#### **A Visual Example**



#### Problems w/ Softmax

- Computationally inefficient at training time
- Computationally inefficient at test time
- Many parameters
- Sub-optimal accuracy

#### Calculation/Parameter Efficient Softmax Variants

#### Negative Sampling/ Noise Contrastive Estimation

Calculate the denominator over a subset



Negative samples according to distribution q

#### Lots of Alternatives!

• Noise contrastive estimation: train a model to discriminate between true and false examples

$$p(D = 0 \mid c, w) = \frac{k \times q(w)}{u_{\theta}(w, c) + k \times q(w)}$$

$$p(D = 1 \mid c, w) = \frac{u_{\theta}(w, c)}{u_{\theta}(w, c) + k \times q(w)}.$$

$$\sum_{(w,c) \in \mathcal{D}} \left( \log p(D = 1 \mid c, w) + \sum_{i=1,\overline{w} \sim q}^{k} \log p(D = 0 \mid c, \overline{w}) \right)$$

• <u>Negative sampling</u>: e.g. word2vec  $p(D = 0 | c, w) = \frac{1}{u_{\theta}(w, c) + 1}$  $p(D = 1 | c, w) = \frac{u_{\theta}(w, c)}{u_{\theta}(w, c) + 1}$ 

BlackOut

$$J^s_{disc}(\theta) = \log \tilde{p}_{\theta}(w_i|s) + \sum_{j \in S_K} \log(1 - \tilde{p}_{\theta}(w_j|s)))$$

Used in MT: Eriguchi et al. 2016: Tree-to-sequence attentional neural machine translation  $_{\rm B}$ 

Ref: Chris Dyer, 2014. Notes on Noise Contrastive Estimation and Negative Sampling

#### GPUifying Noise Contrastive Estimation

- Creating the negative samples and arranging memory is expensive on GPU
- Simple solution: sample the negative samples once for each mini-batch

Zoph et al. 2016. Simple, Fast Noise-Contrastive Estimation for Large RNN Vocabularies

#### Summary of Negative Sampling Approaches

- Train time efficiency: Much faster!
- Test time efficiency: Same
- Number of parameters: Same
- Test time accuracy: A little worse?
- Code complexity: Moderate

### **Vocabulary Selection**

Select the vocabulary on a per-sentence basis

Mi 2016. Vocabulary Manipulation for NMT L'Hostis et al. 2016. Vocabulary Selection Strategies for NMT



#### **Summary of Vocabulary Selection**

- Train time efficiency: A little faster
- Test time efficiency: Much faster!
- Number of parameters: Same
- Test time accuracy: **Better** or **a little worse**
- Code complexity: Moderate

#### **Class-based Softmax**

- Predict P(class|hidden), then P(word|class,hidden)
- Because P(w|c,h) is 0 for all but one class, efficient computation



Goodman 2001. Classes for Fast Maximum Entropy Training<sup>13</sup>

#### **Hierarchical Softmax**

- Tree-structured prediction of word ID
- Usually modeled as a sequence of binary decisions



Morin and Bengio 2005: Hierarchical Probabilistic NNLM

#### Summary of Class-based Softmaxes

- Train time efficiency: Faster on CPU, Pain to GPU
- Test time efficiency: Worse
- Number of parameters: More
- Test time accuracy: Slightly worse to slightly better
- Code complexity: High

#### **Binary Code Prediction**

• Just directly predict the binary code of the word ID

$$\sigma(W h + b) = \int_{1}^{0} \int_{1}^{1} \int_{0}^{1} \int$$

- Like hierarchical softmax, but with shared weights at every layer  $\rightarrow$  fewer parameters, easy to GPU

Oda et al. 2017: NMT Via Binary Code Prediction

#### **Two Improvements**

#### <u>Hybrid model</u>

#### **Error correcting codes**





#### Summary of Binary Code Prediction

- Train time efficiency: Faster
- Test time efficiency: Faster (12x on CPU!)
- Number of parameters: Fewer
- Test time accuracy: Slightly worse
- Code complexity: Moderate

#### **Parameter Sharing**

#### **Parameter Sharing**

- We have two |V| x |h| matrices in the decoder:
  - Input word embeddings, which we look up and feed into the RNN
  - Output word embeddings, which are the weight matrix
     W in the softmax
- Simple idea: tie their weights together

Press et al. 2016: Using the output embedding to improve language models Inan et al. 2016: Tying Word Vectors and Word Classifiers: A Loss Framework for Language Modeling

## **Summary of Parameter Sharing**

- Train time efficiency: Same
- Test time efficiency: Same
- Number of parameters: Fewer
- Test time accuracy: Better
- Code complexity: Low

#### Incorporating External Information

#### Problems w/ Lexical Choice in Neural MT

| Input:            | I come from <u>Tunisia</u> . |  |  |  |
|-------------------|------------------------------|--|--|--|
| <b>Reference:</b> | <u>チュニジア</u> の出身です。          |  |  |  |
|                   | Chunisia no shusshindesu.    |  |  |  |
|                   | (I'm from Tunisia.)          |  |  |  |
| System:           | <u> ノルウェー</u> の 出身です。        |  |  |  |
|                   | Noruue- no shusshindesu.     |  |  |  |
|                   | (I'm from Norway.)           |  |  |  |

Arthur et al. 2016: Incorporating Discrete Translation Lexicons in NMT **Carnegie Mellon University** 

#### When Does Translation Succeed? (in Output Embedding Space) I come from Tunisia





**Carnegie Mellon University** 

#### When Does Translation Fail? Embeddings Version I come from Tunisia





W<sub>\*.consume</sub>

**Carnegie Mellon University** 







## What about Traditional Symbolic Models?



#### Even if We Make a Mistake...



| <b>Calculating Lexicon Probabilities</b> |                  |              |                           |                 |              |  |  |
|------------------------------------------|------------------|--------------|---------------------------|-----------------|--------------|--|--|
| Attention                                | <b> </b><br>0.05 | come<br>0.01 | from <sup>-</sup><br>0.02 | Tunisi<br>0.93  | a            |  |  |
| vatashi<br>pre                           | 0.6<br>0.2       | 0.03<br>0.01 | 0.01<br>0.02              | 0.0<br>0.0      | 0.03         |  |  |
| <br>kuru<br>kara                         | <br>0.01<br>0.02 | 0.3<br>0.1   | 0.01<br>0.5               | <br>0.0<br>0.01 | 0.00<br>0.02 |  |  |
| <br>chunijia<br>oranda                   | <br>0.0<br>0.0   | 0.0<br>0.0   | 0.0<br>0.0                | <br>0.96<br>0.0 | 0.89<br>0.00 |  |  |

Word-by-word lexicon prob

Conditional lexicon prob

#### Incorporating w/ Neural MT

• softmax bias:

 $p(e_i|h_i) = softmax(W * h_i + b + log(lex_i + \epsilon))$ To prevent -\infty scores

• Linear interpolation:

 $p(e_i | h_i) = \gamma * softmax(W * h_i + b) + (1-\gamma) * lex_i$ 

### **Summary of External Lexicons**

- Train time efficiency: Worse
- Test time efficiency: Worse
- Number of parameters: Same
- Test time accuracy: **Better** to **Much Better**
- Code complexity: High

#### **Other Varieties of Biases**

• Copying source words as-is

Gu et al. 2016. Incorporating copying mechanism in sequence-to-sequence learning Gulcehre et al. 2016. Pointing the unknown words

Remembering and copying target words
 Were called cache models, now called <u>\*pointer</u>
 <u>sentinel models</u>:

Merity et al. 2016. Pointer Sentinel Mixture Models

#### **Use of External Phrase Tables**



Tang et al. 2016. NMT with External Phrase Memory

#### Conclusion

#### Conclusion

- Lots of softmax alternatives for neural MT
   → Consider them in your systems!
- But there is no fast at train, fast at test, accurate, small, and simple method
  - $\rightarrow$  Consider making one yourself!