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Coding =
Concept → Implementation

sort list x
in descending

order
x.sort(reverse=True)



The (Famous) Stack 
Overflow Cycle

Formulate the Idea sort my_list in descending order

Search the 
Web 

python sort list in descending order

Browse thru. 
results

Modify the 
result sorted(my_list, reverse=True)



Goal: Assistive Interfaces for 
Programmers

Interface by William Qian



Today’s Agenda:
Can Natural Language Help?
• Syntactic models to create code from natural 

language

• Large-scale mining of open-domain datasets for 
code generation

• Semi-supervised learning for semantic parsing and 
code generation

• Retrieval-based Code Generation



Natural Language vs. 
Programming Language



Natural Language vs. Code

Note: Good summary in Allamanis et al. (2017) 

Natural Language Code
Human interpretable Human and machine interpretable

Ambiguous Precise in interpretation

Structured, but flexible Structured w/o flexibility



Structure in Code

x Load % 5 == 0

If

Compare

BinOp

Name Num Num

if x % 5 == 0:

AST Parser
Can we take
advantage of
this for better

NL-code interfaces?

(used in models of Maddison & Tarlow 2014)



A Syntactic Neural Model for Code 
Synthesis from Natural Language

(ACL 2017)

Joint Work w/ Pengcheng Yin



Previous Work
• Lots of work on rule-based methods for natural 

language programming (e.g. see Balzer 1985)

• Lots of work on semantic parsing w/ grammar-
based statistical models (e.g. Wong & Mooney 
2007)

• One work on using neural sequence-to-sequence 
models for code generation in Python (Ling et al. 
2016)



Sequence-to-sequence Models 
(Sutskever et al. 2014, Bahadanau et al. 2015)

• Neural network models for transducing sequences

sort list x backwards
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Proposed Method: Syntactic 
Neural Models for Code Synthesis

• Key idea: use the grammar of the programming language 
(Python) as prior knowledge in a neural model

sorted(my_list, reverse=True)Surface Code 

Deterministic transformation
(using Python astor library)

Input Intent sort my_list in descending order

Generated AST

NOTE: very nice contemporaneous work by Rabinovich et al. (2017)



Generation Process
• Factorize the AST into actions:
•ApplyRule: generate an internal node in the AST
•GenToken: generate (part of) a token



Formulation as a Neural 
Model

NL Intent

Action Sequence

LSTM Encoder

LSTM Decoder

Parent Feeding (Dong and Lapata, 2016)
Action Flow

• Encoder: summarize the semantics of the NL intent
• Decoder:

• Hidden state keeps track of the generation process of the AST
• Based on the current state, predict an action to grow the AST



Computing Action 
Probabilities

• ApplyRule[r]: apply a production rule r to the current derivation

• GenToken[v]: append a token v to the current terminal node
• Deal with OOV: learning to generate a token or directly copy it from the 

input
Generation prob.

Copy prob.

Final probability: 
marginalize over 

the two paths

Derivation



Experiments
• Natural Language ⟼ Python code: 

• HearthStone (Ling et al., 2016): card game 
implementation

• Django (Oda et al., 2015): web framework

• Natural Language ⟼ Domain Specific Language 
(Semantic Parsing)

• IFTTT (Quirk et al., 2015): personal task automation 
APP



Django Dataset
• Description: manually annotated descriptions for 18K lines 
of code

• Target code: one liners
• Covers a wide range of real-world use cases like I/O 
operation, string manipulation and exception handling

call the function _generator, join the result into a 
string, return the result

Intent

Target



HearthStone Dataset

<name> Divine Favor </name> <cost> 3 </cost> <desc> 
Draw cards until you have as many in hand as your 
opponent </desc>

[Ling et al., 2016]

Intent (Card Property)

Target (Python class, extracted from HearthBreaker)

• Description: properties/fields of an HS card
• Target code: implementation as a Python class from 

HearthBreaker



IFTTT Dataset
• Over 70K user-generated task completion snippets 

crawled from ifttt.com
• Wide variety of topics: home automation, 

productivity, etc.
• Domain-Specific Language (DSL): IF-THIS-THEN-

THAT structure, much simpler grammar

Intent Autosave your Instagram photos to 
Dropbox

Target IF Instagram.AnyNewPhotoByYou 
THEN Dropbox.AddFileFromURL

https://ifttt.com/applets/1p-autosave-
your-instagram-photos-to-dropbox [Quirk et al., 2015]

https://ifttt.com/applets/1p-autosave-your-instagram-photos-to-dropbox


Results

• Baseline systems (do not model syntax a priori):
–Latent Predictor Network [Ling et al., 2016]
–Seq2Tree [Dong and Lapata., 2016]
–Doubly recurrent RNN [Alvarez-Melis and Jaakkola., 2017]

• Take Home Msg:
–Modeling syntax helps for code generation and semantic 

parsing 



Examples
Intent join app_config.path and string 'locale' into a file path, substitute it for localedir. 

Pred.

Intent self.plural is an lambda function with an argument n, which returns result of boolean expression n 
not equal to integer 1

Pred.

Ref.

Intent <name> Burly Rockjaw Trogg </name> <cost> 5 </cost> <attack> 3 </attack>   <defense> 5 
</defense> <desc> Whenever your opponent casts a spell, gain 2 Attack. </desc> <rarity> 
Common </rarity> ...

Ref.

tokens copied from input



TranX Parser [Yin+18]
• Transition-based AST parser based on “abstract syntax 

description language”

• Can define language flexibly for various types of semantic 
parsing

• Good results out-of-the-box!

https://github.com/pcyin/tranX



Learning to Mine NL/Code Pairs 
from Stack Overflow

(MSR 2018)

Joint Work w/
Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu



Datasets are Important!

• Our previous work used Django, HearthStone, 
IFTTT, manually curated datasets

• It couldn't have been done without these

• But these are extremely specific, and small



StackOverflow is Promising!
• StackOverflow 

promises a large 
data source for code 
synthesis

• But code snippets 
don’t necessarily 
reflect the answer to 
the original question



Mining Method



Annotation

• ~100 posts for Python/Java



Features (1):
Structural Features

• "does this look like a valid snippet?"

–Position: Is the snippet a full block? The start/end of a block? 
The only block in an answer?

–Code Features: Contains import? Starts w/ assignment? Is 
value?

–Answer Quality: Answer is accepted? Answer is rank 1, 2, 3?

–Length: What is the number of lines?



Features (2): 
Correspondence Features

• "do the intent and snippet look like they match?"

–Train an RNN to predict P(intent | snippet) and P(snippet | 
intent) given heuristically extracted noisy data

–Use log probabilities and normalized by z score over post, 
etc.



Main Results
• On both Python and Java, 
better results than 
heuristic strategies

• Both structural and 
correspondence features 
were necessary



Transfer Learning
• Can we perform classification w/ no labeled data for that 

language?
Python Java



Examples



: Code Natural-
language Challenge

• ~2500 mined and manually verified examples

• ~600k automatically mined examples
{
"question_id": 36875258,
"intent": "copying one file's contents to another in python",
"rewritten_intent": "copy the content of file 'file.txt' to file 'file2.txt’”,
"snippet": "shutil.copy('file.txt', 'file2.txt’)”

}
{
"question_id": 22240602,
"intent": "How do I check if all elements in a list are the same?",
"rewritten_intent": "check if all elements in list `mylist` are the same",
"snippet": "len(set(mylist)) == 1"

}

http://conala-corpus.github.io



StructVAE: Semi-supervised 
Learning for Semantic Parsing

(ACL 2018)

Joint Work w/
Pengcheng Yin, Junxian He, Chunting Zhou



Motivation
Data Collection is CostlyNeural Models are Data Hungry

Purely supervised neural 
semantic parsing models require 
large amounts of training data

Copy the content of file 'file.txt' to file 'file2.txt'
shutil.copy('file.txt','file2.txt')

Get a list of words `words` of a file 'myfile'
words = open('myfile').read().split()

Check if all elements in list `mylist` are the same
len(set(mylist)) == 1

Collecting parallel 
training data costs           
and 

[Yin et al., 2018] 1700 USD for 3K Python code generation examples
[Berant et al., 2013] 3000 USD for 5.7K question-to-logical form 
examples



Existing Solutions
Weakly supervised 

Learning

Clarke et al. (2010)
Liang et al. (2011)
Berant et al. (2013)

Berant and Liang (2014)
Yih et al. (2015)

Q: Which college did Obama go to?
(and (Type University) 
(Education BarackObama))

A: Occidental College, Columbia Univ.

Zero-Shot Learning
and Domain Adaptation

Fan et al. (2017)
Su and Yan, (2017)
Herzig and Berant, 

(2018)

Data Augmentation
What states border texas?

is_state(x) and 
border(x, texas)

What states border ohio?
is_state(x) and 

border(x, ohio)

Jia and Liang, (2016)
Wang et al. (2015)



Semi-supervised Semantic 
Parsing

Limited Amount of Labeled Data
Sort my_list in descending order

sorted(my_list, reverse=True)

Copy the content of file 'file.txt' to file 
'file2.txt'

shutil.copy('file.txt’,
'file2.txt')

Check if all elements in list `mylist` are 
the same

len(set(mylist)) == 1

Extra Unlabeled Utterances

Get a list of words `words` of a file 'myfile'

Convert a list of integers into a single integer

Format a datetime object `when` to 
extract date only

Swap values in a tuple/list in list `mylist`

BeautifulSoup search string 'Elsie' inside 
tag 'a'

Convert string to lowercase



Tree-structured Latent Variables

Sort my_list in descending 
order

Structured Latent Semantic Space

Latent Meaning Representation
(Abstract Syntax Trees)

Prior

p( )

Inference Model

q�( | )

Reconstruction Model

p✓( | )

sorted(my_list, reverse=True)

Posterior 
inference 

corresponds to 
semantic parsing



Semi-supervised Learning  w/ 
StructVAE

p(        ) = ∫ p(         |        ) p(        ) 

Unsupervised Objective

∈ Unlabeled Data

X
log p( )

Supervised Objective

( ,        ) ∈ Labeled Data

X
log q�( | )

Sort my_list in descending 
order

Structured Latent Semantic Space

Prior

p( )

Inference Model

q�( | )

Reconstruction Model

p✓( | )

Labeled Data {        ,        }

Unlabeled Data {         }



StructVAE: VAEs with 
Structured Latent Variables

Variational approximation of the marginal likelihood

Neural semantic parser Neural sequence-to-sequence model 

[Miao and Blunsom, 
2016]

Neural Language Model

(use linearized trees as inputs)

Inference Model Prior

Unsupervised Objective

∈ Unlabeled Data

X
log p( ) log p( )

�KL Divergence
h
q�( | )||p( )

i

Reconstruction Model

p✓( | )

�
X

⇠q�( | )

log p✓( | )
0

0



How Does Unsupervised Data 
Help?

X

Training Examples

@ log q�( | )

@�

Supervised Objective

( ,        ) ∈ Labeled Data

X
log q�( | ) r =



How Does Unsupervised 
Data Help?

Learning signal acts as the tuning weights of gradients received by different 
sampled latent meaning representations from the inference model

The learning signal
Prior Reconstruction Model

⇡

Unsupervised Objective

∈ Unlabeled Data

X
log p( ) /

X

Sampled

⇥
0

0
@q�( | )

@�
r



How Does Unsupervised 
Data Help?

Learning fevers sampled latent meaning representations that are both:
• Faithfully encode the semantics of the utterance -> high 

reconstruction score
• Succinct and natural -> high prior probability

Sort my_list in descending order

sorted(my_list, 
reverse=True)

sorted(my_list)

sorted(my_list, 
descending=True)

0

3

Reconstruction ModelPrior

Reconstruction ModelPrior

0
1

0

0

2

Reconstruction ModelPrior



The Inference Model:
AST-based Parser

A transition-based parser that transduces natural language 
utterances into Abstract Syntax Trees

[Yin and Neubig, 2017; 
Rabinovich et al. 2017]

Sort my_list in descending order

stmt   FunctionDef(identifiler name,

expr   Call(expr func, expr* args,

Grammar Specification

 arguments args, stmt* body)
 Expr(expr value)

keyword* keywords)

Str(string id)

|

Name(identifier id)|
|

Input Utterance

ApplyConstr(Expr)

ApplyConstr(Call)

ApplyConstr(Name)

Transition System

. . .

GenToken(sorted)

Expr

Call

Name

sorted

Name

my_list

Keyword

Abstract Syntax Tree

. . .

Inference Model



Research Questions

• RQ1 Does StructVAE outperforms purely 
supervised semantic parsers with extra unlabeled 
data?

• RQ2 Can we get some empirical evidence about 
why StructVAE works?



StructVAE vs. Baselines

all available training utterances as unlabeled data

Inference model as supervised parser

Self Training (semi-supervised baseline)

StructVAE

The gap is much
more obvious when
we use a mediocre
parserJ



Why does StructVAE
Work?

• For each unlabeled utterance           , compute the learning signal          for gold 
samples and other (imperfect) samples

�30 �20 �10 0 10 20
0.0

0.1

0.2

�30 �20 �10 0 10 20
0.0

0.1

0.2

Gold SamplesOther Samples
0

Avg.=2.59
0
Avg.=-5.12



Learning Signal

f = os.path.join(p, cmd) -1.00 -24.33 -2.00 9.14

PriorParser Score

q�( | )
Reconstruction Score

p✓( | )

primary_keys = pks.split(’,’) -2.38 -10.24 -11.39 2.05

PriorParser Score

q�( | )
Reconstruction Score

p✓( | )

Join p and cmd into a file path, substitute it for f

p = path.join(p, cmd) -8.12 -27.89 -20.96 -9.47

Split string pks by ‘,’ , substitute the result for primary_keys

primary_keys = pks.split + ’,’ -1.83 -20.41 -14.87 -2.60

Learning Signal

Learning Signal



Retrieval-based Neural Code 
Generation

(EMNLP 2018)

Joint Work w/
Shirley Hayati, Raphaël Olivier, Pravalika Avvaru,

Pengcheng Yin, Anthony Tomasic



The Stack Overflow Cycle
Formulate the Idea sort my_list in descending order

Search the 
Web 

python sort list in descending order

Browse thru. 
results

Modify the 
result sorted(my_list, reverse=True)

Can we do the same thing in code generation models?!



Reminder: Syntax-based 
Generation

Input: params is an empty list Action Tree:
Output: params = [ ]
Neural Model: bidirectional Encoder-
Decoder with Action Embedding, 
Context Vector, Parent Feeding, 
Copying Mechanism

Actions:

Apply Rule

Generate Token with Copy
Generate Token



Neural Machine 
Translation + Retrieval

[Gu+2018, Zhang+2018]

n-grams

n-grams

n-grams

params is an empty list
Params adalah list kosong

List lst is an empty list
List lst adalah list kosong

Retrieved from Train SetInput

Boosted
n-gram

probability

retrieve

extract

boost



ReCode: Neural Code 
Retrieval + Generation

params is an empty list
params = [ ]

List lst is an empty list
lst = [ ]

Retrieved from Train SetInput

Boosted
n-gram

probability

retrieve

extract

boost n-gram action 
subtrees



N-gram Action Subtrees

Name → str

str → [lst]

[/n]

3-Gram Action Subtree

lst is an empty listList



N-gram Action Subtrees
w/ Copying

Input

is an empty list
Name → str

str → 

[/n] lst is an empty listList

3-Gram Action Subtree COPY Action in GENTOKENRetrieved

params

1 2 3 4 5 6

1 2 3 4 5

params

params



ReCode Pipeline
NL description: “params is an empty list”

Neural 
Model

<description,
code>

Decoding 
Step

Boost n-gram 
subtree probability

Train Set

Compute similarity Extract 
N-gram Action 

Subtrees

Code



Results
All improvements are statistically significant with p < 0.001

84.7

78.4

84.5

75.8



Conclusion



Conclusion
• Data-driven language → code within reach!

• Modeling structure of the PL is important and 
helpful

• Data is difficult, but we're making progress through 
mining

• Semi-supervised learning and retrieval to take 
advantage of large datasets



Questions?


