

Learning with Latent Linguistic Structure

Graham Neubig

@ BlackBoxNLP 11/1/2018

with: Junxian He

Pengcheng Yin

Chunting Zhou

Taylor Berg-Kirkpatrick

How to Achieve Interpretability in Neural Nets?

Research Problems

- Fundamentally highly interpretable models (e.g. discrete HMMs) are not sufficiently powerful
- How can we harness the power of neural networks, with underlying interpretable representations?
- How can we learn them on unlabeled data?

e.g. Syntactic Analysis

Dependency:

Parts-of-speech:

DT NN VBD IN DT JJ NN

The cat sat on a green wall

Supervised Approach

Supervised Approach

Supervised Learning

X

 θ

Y

John passes the ball upfield to Peter, who shoots for the goal. The shot is deflected by Mary and the ball goes out of bounds.

John passes the ball upfield to Peter, who shoots for the goal. The shot is deflected by Mary and the ball goes out of bounds.

John passes the ball upfield to Peter, who shoots for the goal. The shot is deflected by Mary and the ball goes out of bounds.

John passes the ball upfield to Peter, who shoots for the goal. The shot is deflected by Mary and the ball goes out of bounds.

Supervised Approach

Latent Variable Approach

X

 ϵ

Y

其其ままずま

╨╨╍╌╨┉

Latent Variable Approach

Multi-space Variational Encoder-Decoders

Chunting Zhou and Graham Neubig (ACL 2017)

Features of Words

• Syntax:

- What syntactic features does the word have?
- Closed-class, generally enumerable for a specific language.

• Meaning/Symbol:

- What is the meaning of the word, how is it spelled/ pronounced?
- Open-class, complicated regularities and relationships.
- Can we create a model that elegantly models both?

Background: Variational Auto-encoder (Kingma et al., 2014, Bowman et al., 2016)

Maximize the Variational lower bound:

$$\log p_{\theta}(\mathbf{x}) \ge \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] - \mathrm{KL}(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))$$

Proposed Model: Multi-space Variational Encoder-Decoders

- Modeling complicated higher-level structure (e.g. meaning or symbol of the word): incorporation of continuous latent variables
- Modeling closed-class and interpretable features (e.g. syntax): incorporation of discrete latent variables

plays, played, playing

How can we learn in a un- or semi-supervised way?

Variable Definitions

Z:continuous latent variable

 $\mathbf{y}^{(t)} = [y_1^{(t)}, y_2^{(t)}, \cdots y_K^{(t)}]$: discrete labels for each target sequence

Supervised Learning: Labeled Multi-space Variational Autoencoders

Training Data: surface form + labels

Discriminative label classifier:

$$\mathcal{D}(\mathbf{x}, \mathbf{y}) = \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim p_l(\mathbf{x}, \mathbf{y})} [-\log q_{\phi}(\mathbf{y} | \mathbf{x})]$$

Decoder: $p_{\theta}(\mathbf{x}|\mathbf{y},\mathbf{z}) = f(\mathbf{x}|\mathbf{y},\mathbf{z};\theta)$

(with label attention)

Unsupervised Learning: Unlabeled Multi-space Variational Auto-encoders

Labeled Sequence-to-sequence Training: Multi-space Variational Encoder-Decoders

Maximize: $\mathcal{L}_l(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}|\mathbf{x}^{(s)}) = \text{Variational Lower Bound of } \log p(\mathbf{x}^{(t)}, \mathbf{y}^{(t)}|\mathbf{x}^{(s)})$

Learning MSVED

• Learning Continuous Latent Variables: Reparameterization trick (Kingma et al., 2014):

$$\epsilon \sim \mathcal{N}(0,1), \quad \mathbf{z} = \mu_{\phi}(x) + \sigma_{\phi}(x) \circ \epsilon$$

• Learning Discrete Latent Variables: Gumbel-Softmax (Maddison et al., 2017)

$$\hat{y}_{ij} = \frac{\exp((\log(\pi_{ij}) + g_{ij})/\tau)}{\sum_{k=1}^{N_i} \exp((\log(\pi_{ik}) + g_{ik})/\tau)}$$

- Training tricks (Bowman et al. 2016):
 - •KL-divergence Annealing
 - Input dropout in the decoder

Experimental Setup

Task: Morphology re-inflection

Dataset: SIGMORPHON 2016 task 3

source word: communicated

target word: communicates

target labels: V;3;SG;PRS

Language: Turkish, Arabic, Maltese, Finnish, Spanish, German, Hungarian, Navajo,

Georgian, Russian

Results and Analysis

Analysis on Tag Attention

Visualization of Latent Continuous Variables

• Clusters colored by actual lemma:

StructVAE: Tree-structured Latent Variable Models for Semi-supervised Semantic Parsing

Pengcheng Yin, Chunting Zhou, Junxian He, Graham Neubig (ACL 2018)

What About More Complicated Structure?

Semantic Parsing: Transducing natural language utterances (e.g., queries) into machine-executable formal meaning representations (e.g., logical form, source code)

Domain-Specific Meaning Representations

General-Purpose Programming Languages

Sort my_list in descending order

Python

Research Issue

Neural Models are Data Hungry

Purely supervised neural semantic parsing models require large amounts of training data

Data Collection is Costly

Copy the content of file 'file.txt' to file 'file2.txt'

```
shutil.copy('file.txt','file2.txt')
```

Get a list of words `words` of a file 'myfile'

Check if all elements in list `mylist` are the same

```
len(set(mylist)) == 1
```

Collecting parallel training data costs and and

Semi-supervised Semantic Parsing

Limited Amount of Labeled Data

- Sort my_list in descending order
- sorted(my_list, reverse=True)
- Copy the content of file 'file.txt' to file 'file2.txt'
- shutil.copy('file.txt',
 'file2.txt')
- Check if all elements in list `mylist` are the same
- 'en(set(mylist)) == 1

Extra Unlabeled Utterances

- Get a list of words `words` of a file 'myfile'
- Convert a list of integers into a single integer
- Format a datetime object `when` to extract date only
- Swap values in a tuple/list in list `mylist`
- BeautifulSoup search string 'Elsie' inside tag 'a'
- Convert string to lowercase

Prior

Meaning Representations as Tree-structured Latent Variables

Latent Meaning Representation (Abstract Syntax Trees)

Posterior inference corresponds to semantic parsing

Sort my_list in descending order

Prior

Semi-supervised Learning with StructVAE

Sort my_list in descending order

StructVAE: VAEs with Tree-structured Latent Variables

Neural sequence-to-sequence model

Neural Language Model

(use linearized trees as inputs)

Variational approximation of the marginal likelihood

$$\log p(\mathbf{e}^{?}) \geq \sum_{\boldsymbol{\sim} q_{\phi}(\mathbf{e}^{?})} \log p_{\theta}(\mathbf{e}^{?})$$

$$-\text{KL-Divergence} \left[q_{\phi}(\mathbf{e}^{?}) | \boldsymbol{\rho}(\mathbf{e}^{?}) \right]$$

How does extra unlabeled data help learning?

$$\nabla = \sum \frac{\partial \log q_{\phi}(\mathbf{r})}{\partial \phi}$$
 Training Examples

How does extra unlabeled data help learning?

$$\nabla \propto \sum_{\text{fiff}} \times \frac{\partial q_{\phi}(\mathbf{p}_{\phi}(\mathbf{p}_{\phi}))}{\partial \phi}$$

The learning signal
$$||p|| \approx \left(\begin{array}{c} |p| \\ p| \\ p| \end{array} \right)$$

Learning signal acts as the tuning weights of gradients received by different sampled latent meaning representations from the inference model

How does extra unlabeled data help learning?

Sort my_list in descending order

Learning favors sampled latent meaning representations that both:

Faithfully encode the semantics of the utterance -> high reconstruction score
 Are succinct and natural -> high prior probability

The Inference Model: a Transition-based Parser

A transition-based parser that transduces natural language utterances into Abstract Syntax Trees

Grammar Specification

Input Utterance

Sort my_list in descending order

Datasets

Django Python Code Generation Task

Call the function _generator, join the result into a string, return the result

ATIS Semantic Parsing Task

Show me flights from San Francisco to Washington

```
lambda $0 e
    (and (flight $0)
    (from $0 san_Francisco:ci)
    (to $0 washington:ci))
```

Research Questions

- RQ1 Does StructVAE outperforms purely supervised semantic parsers with extra unlabeled data?
- RQ2 Can we get some empirical evidence about why StructVAE works?

StructVAE v.s. Baselines

Why does StructVAE work?

• For each unlabeled utterance , compute the learning signal for gold samples and other (imperfect) samples

Institute

Case Studies

Join p and cmd into a file path, substitute it for f

$$p(\begin{picture}(100,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0)$$

f = os.path.join(p, cmd)

-1.00

-24.33

-2.00

0 47

9.14

-8.12

-27.89

-20.96

-9.47

Split string pks by ',', substitute the result for primary_keys

- primary_keys = pks.split(',')
- -2.38

-10.24

-11.39

2.05

- primary_keys = pks.split + ','
- -1.83

-20.41

-14.87

-2.60

Unsupervised Learning of Syntactic Structure w/ Invertible Neural Projections

Junxian He, Graham Neubig, Taylor Berg-Kirkpatrick (EMNLP 2018)

HMM for Part-of-Speech Induction

Gaussian HMM for POS Induction

Latent Embeddings w/ Neural Projection

Dependency Model with Valence

Dependency Model with Valence

Dependency Parse Induction from POS

Grammar Induction from Raw Text

Grammar Induction from Raw Text

Latent Embeddings w/ Neural Projection

$$p(\boldsymbol{x}_i|z_i;\eta,\phi)$$

$$p(oldsymbol{x}_i|z_i;\eta,\phi)$$
Gaussian embedding parameters

dim(x) = dim(e) and f is invertible

$$p(\boldsymbol{x}_i|z_i;\eta,\phi)$$

$$= p(f_{\phi}^{-1}(\boldsymbol{x}_i)|z_i;\eta) \left| \det \frac{\partial f^{-1}}{\partial \boldsymbol{x}_i} \right|$$

Why Invertible

 $\max \log p_{\mathrm{GHMM}}(f_{\phi}(\boldsymbol{x}))$

Learning with Inverse Projection

Learning with Inverse Projection

$$egin{aligned} oldsymbol{h}_{i,l}^{(1)} &= oldsymbol{x}_{i,l} \ oldsymbol{h}_{i,r}^{(1)} &= oldsymbol{x}_{i,r} + g(oldsymbol{x}_{i,l}) \end{aligned}$$

Learning with Inverse Projection

$$oldsymbol{h}_{i,l}^{(1)} = oldsymbol{x}_{i,l}$$

$$h_{i,r}^{(1)} = x_{i,r} + g(x_{i,l})$$

Experiments

- Dataset: English Penn Treebank
- POS tagging

Trained and tested on whole PTB

Grammar induction

Trained on sentences of length <= 10 in section 2-21

Tested on sentences in section 23

Part-of-speech Induction

Outperform feature-based SOTA

Dependency Parse Induction

Original Embedding Space

Projected Embedding Space w/ Markov Prior

Projected Embedding Space w/ DMV Prior

Projected Embedding Space w/ DMV Prior

Projected Embedding Space w/ DMV Prior

Conclusion

Learning with Latent Linguistic Structure

- How can we harness the power of neural networks?
 - NN-based learning on top of latent structured representations
- How can we learn on unlabeled data?
 - Structured variational auto-encoders for semi-supervised learning
 - Structured priors and invertible transformations for unsupervised learning