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Research Problems

 Fundamentally highly interpretable models (e.g. discrete
HMMs) are not sufficiently powerful

« How can we harness the power of neural networks, with
underlying interpretable representations’

e How can we learn them on unlabeled data?
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Dependency: f\f\/’\ﬁl

Parts-of-speech: DT NN VBD IN DT JJ NN

The cat sat on a green wall
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Supervised Approach

John passes the ball upfield
to Peter, who shoots for the
goal. The shot is deflected by

Mary and the ball goes out
of bounds.
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Features of Words
e Syntax:
 What syntactic features does the word have?
e Closed-class, generally enumerable for a specific language.
e Meaning/Symbol:

 What is the meaning of the word, how is it spelled/
pronounced?

e Open-class, complicated regularities and relationships.

 Can we create a model that elegantly models both?

/\ Languag
/\ Techn
Institu

age
ologies
LI stitute



Carnegie Mellon Universi

Background: Variational Auto-encoder
(Kingma et al., 2014, Bowman et al., 2016)

P I a Yy s </s>

11E8is

j q¢(z|x): Recognition model/Encoder

eee

\ po(x|z): Generation model/Decoder

338883

P | a Y s </s>

Maximize the Variational lower bound:

<

108 P (X) > Eqr ) 08 1o (x|2)] — KL(g(2])|p(2))
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Proposed Model: Multi-space Variational Encoder-Decoders

|_atent Continuous

Lemma
' X X ]

é 1L BT e o o
H HHCO :
@ Latent Discrete 5o oa oy &

d </s>
+PP
+PAST
+VERB

e Modeling complicated higher-level structure (e.g. meaning or
symbol of the word): incorporation of continuous latent variables

e Modeling closed-class and interpretable features (e.g. syntax):
incorporation of discrete latent variables

plays, played, playing

!
R

language  « HOW can we learn in a un- or semi-supervised way?
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Variable Definitions

(8>° d Source sequence

7 .continuous latent variable

S </s>

T

Lemma
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y(t) — | (t) (1) (t)]

Y1 Yo 5

+PP
+PAST
@ +\VERB

:discrete labels for each target sequence
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Supervised Learning:
| abeleo I\/Iu\ti—spaoe Variational Autoencoders

s </s>
Training Data:
. E surface form + labels
qs(z]x) = N (2|pg(x), diag(c} (x) Discrete Labels
Latent Contmuous 3
Lemma @®-PRs

“play” PPPS

@ - VERB

Discriminative label classifier:
Decoder:po(x|y,z) = f(x|y,z;0)
L (%,y)~p1(%,y) — log q¢(y|x)]
(with label attention) E E .AEAEAE

Maximize : U (x) = Variational Lower Bound of log p(x,y)
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Decoder: ps(x|y,z) = (Xy,N/
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Unsupervised Learning:
Unlabeled I\/\u\ti—spaoe Variational Auto-encoders

46 (2]x) = N (2|1 (x), diag (o7 (x)

s </s>

I#i%%

Training Data:
surface form only

9o (y|x) = qub yrlx) = | [ Cat(yxlms(x)
k

Latent Contmuous 3
S olay” Lemma @-PRs
(XX ] -+VERB

| atent Discrete

3888ds

Maximize : U (x)

= Variational Lower Bound of logp(x,y)
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| abeled Sequence-to-sequence Training:
I\/\u\ti—space Variational Encoder-Decoders

I a Y </s>
| Training Data:
4 two surface forms
-4 + labels

46 (2]x) = N (z|pe(x), diag (o7 (x)

L atent Contmuous 3
*play” Lemma @ -rRs Discrete Labels
000 @ +VERB

Decoder: py(x|y, z) = (Xy,m/
33888

</s>

Maximize : £;(x"), y®)|x(®)) = Variational Lower Bound of log p(x*), y®|x(%))
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| earning MSVED

e Learning Continuous Latent Variables:
Reparameterization trick (Kingma et al., 2014):

e ~N(0,1), z=py(x)+0o4(x)oc

e Learning Discrete Latent Variables:
Gumbel-Softmax (Maddison et al., 2017)

exp((log(mi;) + gij)/T)
St exp((log(mik) + gin) /7

Yis —

e Training tricks (Bowman et al. 2016):

«KL-divergence Annealing
e Input dropout in the decoder
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Experimental Setup

Task: Morphology re-inflection

Dataset: SIGMORPHON 2016 task 3
source word: communicated
target word: communicates

target labels: V;3;5G;PRS

Language: Turkish, Arabic, Maltese, Finnish,
Spanish, German, Hungarian, Navajo,
Georgian, Russian
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Avg. Acc over 10 Languages
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Results and Analysis

100 .
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bi-directional training

semi-supervised training

Helped by

Competitive w/
standard attention

S

MED-Ensemble

MED-Single

B Proposed MSVE
B Baseline MED
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Analysis on lag Attention

al->1maratiyyatu
case=NOM I

mood=None

.

per=None

poss=None

num=PL
tense=None
aspect=None

voice=None

gen—FEM I I
def—DEF -
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Visualization of Latent Continuous Variables

e (Clusters colored by actual lemma:

hat .\
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Carnegie Mellon University
School of Computer Science

StructVAE: Tree-structured Latent
Variable Models for semi-supervised
Semantic Parsing

Pengcheng Yin, Chunting Zhou, Junxian He, Graham Neubig
(ACL 2018)
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What About More Complicated Structure®

Semantic Parsing: Transducing natural language utterances (e.g., queries) into
machine-executable formal meaning representations (e.g., logical form, source code)

&

ot Show me flights from Pittsburgh to
—  Washington

Domain-Specific
Meaning Representations

é;'lambda SO e (and (flight $0)
(from SO

san Francisco:c1)
(to SO0 washington:c1i))

lambda-calculus logical form
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General-Purpose P
Programming Languages

of7 Sort my_list in descending order

i

‘) sorted(my list,

—
reverse=True)

Python
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Research Issue

Neural Models are Data Hungry

\ ApplyRule GenToken

o > UN-00 00 -0

< ({}Q‘/ “rQ ? ntermnal t rminal
T T T $We f the front d
|_~ES1‘—’82_’S3 S8 "18 |

hy| == |hy| == |h3| = |hy| = |hs

—

sort my_list in  descending order

Purely supervised neural
semantic parsing models require
large amounts of training data

S
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Data Collection is Costly

Copy the content of file Tfile.txt’ to file file2.txt’

shutil.copy( file.txt', "file2.txt")
Get a list of words words  of a file ‘myfile’

words = open( myfile').read().split()
Check if all elements in list ‘mylist  are the same
len(set(mylist)) == 1

Collecting parallel training
data costs é and 9

[Yin et al., 2018] 1700 USD for 3K Python code generation examples
[Berant et al., 2013] 3000 USD for 5.7K question-to-logical form examples



Limited Amount of Labeled Data

oF Sort my_list in descending order

i
—

» sorted(my list, reverse=True)

o0 Copy the content of file file.txt' to
— file file2.txt’

shutil.copy('file.txt’,
'file2.txt')

|

o0 Check if all elements in list mylist  are
L the same

1
o 2
—

*len(set(mylist)) ==
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Semi-supervised Semantic Parsing

Extra Unlabeled Utterances

oF Get a list of words words of a file 'myfile’

o7 Convert a list of integers into a single integer

ol Format a datetime object "when' to
“' extract date only

ol Swap values in a tuple/list in list “mylist"

oD BeautifulSoup search string ‘Elsie’ inside
L tag a’

o\? Convert string to lowercase
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Meaning Representations as Iree-structured Latent Variables

Structured Latent Semantic Space

(E=pr )

value

[ cal1 |

keywords Prior
( Nene Kevword p ( - )
= [ Name J [ eywor J
[sorted] id aV\Va fue
[my listj [reversej [ Name }
= id

| True |

sorted(my list, reverse=True)

Latent Meaning Representation
(Abstract Syntax Trees)

Inference Model Reconstruction Model

> T N 7, c:] :f%.
58?::2:300rn]crl]: ?c(r)ence C](p( =!i ‘ &@ ) P 9( O ‘ )

semantic parsing
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Semi-supervised Learning with StructVAE

Structured Latent Semantic Space
g Labeled Data { l!\l}
n

Unlabeled Data { é@ }

Prior
T p(s ™)
Supervised Objective
Zlogqqs(f"\ o7 ) - N
- oA
( é,@ : =!i ) Labeled Data N B /.\ _
n
Unsupervised ObJectlve Inference Model Reconstruction Model
lo (D
> logp(s > Go(1% | &P) po( &7 g™
°@Unlabeled Data
o\ Sort my_list in descending order
Language T
Technologies
%‘\ (&)= fp& | :" ) P :")
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StructVAE: VAEs with Tree-structured Latent Variables

Inference Model Reconstruction Model P:;;
ol
qqs(:l"é@) pJ(D If‘) p(. )
Neural semantic parser Neural sequence-to-sequence model Neural Language Model

(use linearized trees as inputs)

Variational approximation of the marginal likelihood
Unsupervised Objective

Zlogp(f.i) log p( 0@) lOgPO(&@ ‘ =!i)

2 ynlabeled Data Nq¢( =!i | 0@)
KT D) ' -!\. ol _
KL Divergence gy (% ™| &™)|[p(% ®)
'Il:ga%:glifgies
% Institute [Miao and Blunsom, 2016]
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How does extra unlabeled data help learning?

Supervised Objective O lOg ng -!\- | )
Zlogqqs(f‘\g@) V = E :
( Eg':’i ) Labeled Data Training Examples

[Miao and Blunsom, 2016]
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How does extra unlabeled data help learning?

; Dqp( 27| &)
0P

Unsupervised Objective

> 10gp(=!i)

3@Unlabeled Data

. . — Prior Reconstruction Model
The learning signal |[ii!| ~ p(fli) pg( :lu ‘ &@)

Learning signal acts as the tuning weights of gradients received by different
sampled latent meaning representations from the inference model

B

Language
Technologies

Institute [Miao and Blunsom, 2016]
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How does extra unlabeled data help learning”

& Sort my_list in descending order

.@.
—
, .
-!\- sorted(my list, T P:;\r- Reconstruction Model
N reverse=True) [i14 oD
Y p(ﬁ ) p9( =,\. | 0) )

Learning favors sampled latent meaning representations that both:
- Faithfully encode the semantics of the utterance -> high reconstruction score

Language

Technologies  Are succinct and natural -> high prior probability

Institute
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Inference Model

as(5% | &P)

Grammar Specification Transition System

stmt > FunctionDef (1dentifiler name,

.mé ApplyConstr (Expr)
stmt* body) :

arguments args,
| Expr (expr value)

ApplyConstr (Call)

exprk= Call (expr func, expr* args,

keyword* keywords)

Name (identifier id) ApplyConstr (Name)

| Str(string id)

GenToken (sorted)

Carnegie Mellon Universi

The Inference Model: a Transition-based Parser

Abstract Syntax Tree

A

Name Keyword

Name

A transition-based parser that transduces natural language
utterances into Abstract Syntax Trees

ExXpr

Call

Input Utterance

sorted

my list

Sort my list in descending order
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[Yin and Neubig, 2017; Rabinovich et al. 2017]
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Datasets

Django Python Code Generation ATIS Semantic Parsing Task
Task
o0 Call the function _generator, join -0 Show me flights from San
L the result into a string, return the L Francisco to Washington
1 result
‘*) return ‘’.join( generator()) lambda $0 e

—

(and (flight $O0)
(from $0 san Francisco:c1l)
(to $0 washington:c1i))
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Research Questions

e RQ1 Does StructVAE outperforms purely supervised semantic parsers
with extra unlabeled data?

e RQ2 Can we get some empirical evidence about why StructVAE works?
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I Inference model as supervised parser

StructVAE v.s. Baselines
B Self Training (semi-supervised baseline)

The gap is much more!
obvious when we use|

a mediocre parser & -

- : I I

1000 2000 3000 5000 8000 12000
Amount of Labeled Data

all available training utterances as unlabeled data
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Why does StructVAE work?

. For each unlabeled utterance o\ , compute the learning signal |iii!

O
for gold samples and other (imperfect) samples

0.2

0.1

0-07—5; —920) —10 0 10 20

/
Technologies B Other Samples=!l I Gold Samplesf_
n

Institute

B
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Case Studies

=7 Join p and cmd into a file path, substitute it for f

Parser Score Prior Reconstruction Score Learning Sgnal
Go(% = | &) p( ™) pe(s = &P) m
Q f = os.path.join(p, cmd) -1.00 -24.33 -2.00 9.14
Q p = path.join(p, cmd) -8.12 -27.89 -20.96 -9.47

= Split string pks by *,”, substitute the result for primary_keys

Parser Score Prior Reconstruction Score Learning Sgnal
Go( £ % 1 &P) p(z™) pA g1 &) i
Q primary keys = pks.split(’,"’) -2.38 -10.24 -11.39 2.05
Q primary keys = pks.split + ’,° -1.83 -20.41 -14.87 -2.60

Language
Technologies
Institute
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Carnegie Mellon University
School of Computer Science

Unsupervised Learning of Syntactic
Structure w/ Invertible Neural
Projections

Junxian He, Graham Neubig, Taylor Berg-Kirkpatrick
(EMNLP 2018)
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Gaussian HMM for POS Induction
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The «cat stopped a dog in  Paris

[Klein and Manning 2004]
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O
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‘ CHRONOIONO

[Klein and Manning 2004]
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Grammar Induction from Raw Text
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7N remooses  Grammar Induction from Raw Text

ﬁD OROXO
o | L

The cat stopped a dog in Paris
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Markov prior
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DMV prior
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Language

Technologies Learning and Inference
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]?(«’L‘z'\zz'; 17, ¢)

A
4

Gaussian embedding parameters

50
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Technologies Learning and Inference
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]?(«’L‘z'\zz'; 17, ¢)

k\

Projection parameters

51
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dim(x) = dim(e) and [ is invertible

1
= p(f5 (@) )| det 2L

et
833‘7;

52
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dim(x) = dim(e) and [ is invertible

—1
:p(f(b_l(wi)\zi;ﬁ) d o

et
833‘7;
A

Determinant of Jacobian matrix

53
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Technologies Learning and Inference
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dim(x) = dim(e) and [ is invertible
= p(f(p_l(mi)\zi; n)|d

A

of !

et
833‘7;
A

Gaussian distribution Determinant of Jacobian matrix
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Technologies Learning and Inference
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Example of Markov prior

log p(x) = log parvm (f, " ( /'/

—oo when [ is not invertible
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Language

Technologies Why Invertible
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Example of Markov prior

max longHMM(f¢(m)) /
" fles o)

Information Loss
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Language o o . o
7N emooses  Learning with Inverse Projection
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Language o o o o
7N rmaoses  Learning with Inverse Projection

OO00 OO0,

hf} — Lyl

hfglr,? — L r =+ g(wz l)

Inverse
: ! ijectlon

!

OOOO OOOO:B@

58 [Dinh et al. 201 4]
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7N rmaoses  Learning with Inverse Projection

OOOO?OOOO&

Institute

hf} — Lyl

hfglr,? — L r =+ g(wz l)

Inverse
: ! ijectlon

!

OOOO OOOO:B@

50 [Dinh et al. 201 4]
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® Dataset: English Penn Treebank
o POS tagging
Trained and tested on whole PTB
¢ Grammar induction
Trained on sentences of length <= |0 in section 2-21

Tested on sentences in section 23

60
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ngfp;@gies Part-of-speech Induction
100 100

Feature-based 80.2 >
> 75 Feature-based 72.1

Many-to-1 %
~

50 :
HMM Gaussian Neural HMM Gaussian Neural

HMM Projection HMM Projection

50

Outperform feature-based SOTA
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O 50 5250
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A 25 25

DMV Gaussian Neural DMV Gaussian N.eurgl
DMV Projection DMV Projection
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« How can we harness the power of neural networks?
« NN-based learning on top of latent structured representations
« How can we learn on unlabeled data?

o Structured variational auto-encoders for semi-supervised
learning

e Structured priors and invertible transformations for
unsupervised learning
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