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How do We Build NLP Systems?

• Rule-based systems: Work OK, but require lots of human effort for each 
language for where they're developed 

• Machine learning based systems: Work really well when lots of data available, 
not at all in low-data scenarios



The Long Tail of Data
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Machine Learning Models
• Formally, map an input X into an output Y. Examples: 

 
 
 
 
 
 

• To learn, we can use 
• Paired data <X, Y>, source data X, target data Y 
• Paired/source/target data in similar languages

Input X Output Y Task
Text Text in Other Language Translation
Text Response Dialog

Speech Transcript Speech Recognition
Text Linguistic Structure Language Analysis



Method of Choice for Modeling: 
Sequence-to-sequence with Attention

• Various tasks: Translation, speech recognition, dialog, summarization, language analysis 
• Various models: LSTM, transformer 
• Generally trained using supervised learning: maximize likelihood of <X,Y>
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Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).



The Low-resource NLP Toolbox
• In cases when we have lots of paired data <X,Y> 

-> supervised learning

• But what if we don't?!

• Lots of source or target data X or Y 
-> monolingual pre-training, back-translation

• Paired data in another, similar language <X',Y> or <X,Y'> 
-> multilingual training, transfer 

• Can ask speakers to do a little work to generate data 
-> active learning



Learning from Monolingual Data



Language-model Pre-training
• Given source or target data X or Y, train just the encoder or decoder as a 

language model first
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Ramachandran, Prajit, Peter J. Liu, and Quoc V. Le. "Unsupervised pretraining for sequence to sequence learning." arXiv preprint arXiv:1611.02683 (2016). 
Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

• Many different methods: simple language model, BERT, etc.



Sequence-to-sequence Pre-training
• Given just source, or just target data X or Y, train the encoder and decoder 

together

Song, Kaitao, et al. "Mass: Masked sequence to sequence pre-training for language generation." arXiv preprint arXiv:1905.02450 (2019). 
Lewis, Mike, et al. "Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension." arXiv preprint arXiv:1910.13461 (2019).

pleased to

step step step step

argmax argmax argmax argmax

</s>
argmax

pleased to meet you

pleased to meet you

_MASK_ you
embed



Back Translation
• Translate target data Y into X using a target-to-source translation system, then 

use translated data to train source-to-target system

Sennrich, Rico, Barry Haddow, and Alexandra Birch. "Improving neural machine translation models with monolingual data." arXiv preprint arXiv:1511.06709 (2015). 
Hoang, Vu Cong Duy, et al. "Iterative back-translation for neural machine translation." WNGT. 2018. 
Cheng, Yong. "Semi-supervised learning for neural machine translation." ACL 2016. 25-40.
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back-translate

train
• Iterative back-translation: train src-to-trg, trg-to-src, src-to-trg etc 

• Semi-supervised translation: many iterations of iterative translation, weighting confident instances



Multilingual Learning, 
Cross-lingual Transfer



Multilingual Training [Johnson+17, Ha+17]

• Train a large multi-lingual NLP system
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Johnson, Melvin, et al. "Google’s multilingual neural machine translation system: Enabling zero-shot translation." Transactions of the Association for Computational Linguistics 5 
(2017): 339-351. 
Ha, Thanh-Le, Jan Niehues, and Alexander Waibel. "Toward multilingual neural machine translation with universal encoder and decoder." arXiv preprint arXiv:1611.04798 (2016).



Massively Multilingual Systems
• Can train on 100, or even 1000 languages (e.g. Multilingual BERT, XLM-R) 

• Hard to balance multilingual performance, careful data sampling necessary 
 
 
 

• Multi-DDS: Data sampling can be learned automatically to maximize 
accuracy on all languages

Arivazhagan, Naveen, et al. "Massively multilingual neural machine translation in the wild: Findings and challenges." arXiv preprint arXiv:1907.05019 (2019). 
Conneau, Alexis, et al. "Unsupervised cross-lingual representation learning at scale." arXiv preprint arXiv:1911.02116 (2019). 
Wang, Xinyi, Yulia Tsvetkov, and Graham Neubig. "Balancing Training for Multilingual Neural Machine Translation." arXiv preprint arXiv:2004.06748 (2020).



XTREME: Benchmark for Multilingual Learning 
[Hu, Ruder+ 2020]

• Difficult to examine performance of systems on many different languages 

• XTREME benchmark makes it easy to evaluate on existing datasets over 40 languages 

• Some coverage of African languages -- Afrikaans, Swahili, Yoruba

Hu, Junjie, et al. "XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization." arXiv preprint arXiv:2003.11080 (2020)



Cross-lingual Transfer

• Train on many languages, transfer to another
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• Train on one language, transfer to another

Zoph, Barret, et al. "Transfer learning for low-resource neural machine translation." arXiv preprint arXiv:1604.02201 (2016). 
Neubig, Graham, and Junjie Hu. "Rapid adaptation of neural machine translation to new languages." arXiv preprint arXiv:1808.04189 (2018).



Challenges in Multilingual Transfer



Problem: Transfer Fails for Distant Languages

(a) POS tagging (a) Dependency parsing
He, Junxian, et al. "Cross-Lingual Syntactic Transfer through Unsupervised Adaptation of Invertible Projections." arXiv preprint arXiv:1906.02656 (2019).



How can We Transfer Across Languages Effectively?

• Select similar languages, add to training data. 

• Model lexical/script differences 

• Model syntactic differences



Which Languages to Use for Transfer?
• Similar languages are better for transfer when possible! 
• But when want to transfer, what language do we transfer from? 

(various factors: language similarity, available data, etc.) 
• LangRank: Automatically choose transfer languages data, language similarity features

Lin, Yu-Hsiang, et al. "Choosing transfer languages for cross-lingual learning." arXiv preprint arXiv:1905.12688 (2019).



Problems w/ Word Sharing in Cross-lingual Learning

• Spelling variations (esp. 
in subword models) 

• Script differences / 
morphology (conjugation) 
differences

Units Turkish Uyghur

Graphemes <yetmiyor> 
it is not enough

 <قارىيالمايدۇ >
s/he can’t care for 

Phonemes /qarijalmajdu/ /jetmijoɾ/ 

Morphemes /qari-jal-ma-jdu/ /jet-mi-joɾ/

Conjugations qari + Verb + Pot + 
Neg + Pres + A3sg 

jet + Verb + Neg + 
Prog1 + A3sg 



Better Cross-lingual Models of Words 
[Wang+19]

• A method for word encoding particularly suited for cross-lingual transfer

Handles spelling
similarity

Handles consistent
variations b/t languages

Attempts to capture
latent "concepts"

• On MT for four low-resource languages, we find that: 
• SDE is better than other options such as character n-grams 
• SDE improves significantly over subword-based methods (e.g. used in multilingual BERT)

Wang, Xinyi, et al. "Multilingual Neural Machine Translation With Soft Decoupled Encoding." ICLR 2019 (2019).



Morphological and Phonological Embeddings 
[Chaudhary+18]

• A skilled linguist can create a "reasonable" morphological analyzer 
and transliterator for a new language in short order

• Our method: represent words by bag of 
• phoneme n-grams 
• lemma 
• morphological tags

/jetmijoɾ/  jet + Verb + Neg + Prog1 + A3sg 

• Good results on NER/MT for Turkish->Uyghur, Hindi->Bengali transfer

Chaudhary, Aditi, et al. "Adapting word embeddings to new languages with morphological and phonological subword representations." EMNLP 2018 (2018).



Data Augmentation via Reordering 
[Zhou+ 2019]

• Problem: Source-target word order can differ significantly in methods that use 
monolingual pre-training 

• Solution: Do re-ordering according to grammatical rules, followed by word-by-word 
translation to create pseudo-parallel data

Zhou, Chunting, et al. "Handling Syntactic Divergence in Low-resource Machine Translation." arXiv preprint arXiv:1909.00040 (2019).



Pivoting Methods
• Tons of data in English, fair amount of data in a relatively high-resourced 

language (HRL) and want to process a low-resourced language (LRL) 
• Pivoting through HRL can take advantage of available resources!

Rijhwani, Shruti, et al. "Zero-shot Neural Transfer for Cross-lingual Entity Linking." AAAI 2019 (2019). 
Xia, Mengzhou, et al. "Generalized Data Augmentation for Low-Resource Translation." ACL 2019 (2019).

• Data augmentation for NMT 
using related language and 
unsupervised lexicon induction 
[Xia+19]

• Zero-shot entity linking by 
pivoting through related language 
w/ phonetic representations 
[Rijhwani+19]



Active Learning



Creating Data
• Cross-lingual transfer is great, but no substitute for actual annotated data! 

• Active learning: Ask human annotators to create data that maximally improves performance  

• What level of annotation?: 

• Sentence level -- select hard-looking sentences 

• Phrase-level -- select hard-looking phrases 

• What criterion for selection?: 

• Uncertainty -- phrases/sentences that look hard for the current model 

• Representativeness -- how well does it cover examples in the data?



Simple Example of MT

• Phrase-level annotation 

• Select phrases that are infrequent in parallel data (uncertain), but frequent in 
monolingual data (representative)

Bloodgood, Michael, and Chris Callison-Burch. "Bucking the trend: Large-scale cost-focused active learning for statistical machine translation." Proceedings of the 48th Annual 
Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2010.



Active Learning+Cross-lingual Transfer 
[Chaudhary+ 19]

• Train a cross-lingual model, gradually improve via monolingual annotation 
 
 
 
 
 
 

• Select examples where the cross-lingual model has uncertain predictions 

• Using both cross-lingual and active supervision improves significantly over using just one

Chaudhary, Aditi, et al. "A little annotation does a lot of good: A study in bootstrapping low-resource named entity recognizers." arXiv preprint arXiv:1908.08983 (2019).



Conclusion



The Low-resource NLP Toolbox
• Lots of paired data <X,Y> 

-> supervised learning
• Lots of source or target data X or Y 

-> monolingual pre-training, back-translation
• Paired data in another, similar language <X',Y> or <X,Y'> 

-> multilingual training, transfer 
• Can ask speakers to do a little work to generate data 

-> active learning

Use any tool available to you!
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