How Can We Know What and When Language Models Know?

Graham Neubig

Based on research w/

Zhengbao Jiang, Frank F. Xu, Haibo Ding, and Jun Araki

+ Bonus?!: Interpretable Evaluation + ExplainaBoard

Language Modeling

• Predict the likelihood of a sentence P(X)

Barack Obama served as the 44 th President of the	e United States. P(X) is <mark>high</mark>	
44 th the of the President United States served Ba	arack Obama as. P(X) is low	syntax
Barack Obama barked as the 44 th President of th	e kennel. P(X) is <mark>low</mark>	semantics
Barack Obama served as the 42 nd President of th	e United States. P(X) is low	facts
Barack Obama reached a height of 50 feet tall.	P(X) is low	common sense

Prompting LMs for Knowledge

Factual Question Answering

Tokyo is the capital of [MASK].

Mask 1 Predictions:

96.1% Japan

1.6% Asia

1.0% Tokyo

0.2% Korea

0.2% India

Petroni et al. (2019)

Text Classification

I loved this movie. The movie was [MASK].

```
{bad, OK, good}
```

In Dialogue Context

Human: Hi! **Meena:** Hi there! How's it going? Human: Pretty well. Meena: I'm glad to hear it. :D **Human:** What is your favorite book? **Meena:** Oh, that's a toughie. Right now I'd have to say it's A Dance With Dragons, but Harry Potter is a close second. Human: Oh I love Harry Potter **Meena:** Me too! I've read the series at least five times over. **Human:** Haha, same probably. Which one do you like the most **Meena:** Probably Chamber of Secrets.

•••

Example from Meena chatbot (Adiwardana et al. 2020) https://github.com/google-research/google-research/blob/master/meena/meena.txt

Yin et al. (2019)

Prompting Difficulties

- LMs were **never trained** to solve the exact tasks that we're asking them to solve
- Because of this, they are
 - Very sensitive to the wording that we use to prompt them
 - Will return an answer even when they have no idea
- In this talk we ask:
 - How can we know **what** language models know through better **prompting**?
 - How can we know **when** language models know through better **calibration**?

How Can We Know What Language Models Know? Zhengbao Jiang, Frank F. Xu, Jun Araki, Graham Neubig TACL 2020

Paper: https://arxiv.org/pdf/1911.12543.pdf Code: https://github.com/jzbjyb/LPAQA

Sub-optimal Prompts (in Factual Probing)

DirectX is developed by [MASK]. [MASK] released the DirectX. DirectX is created by [MASK].

1	Intel -1.06	<u>Microsoft</u> -1.77	Microsoft -2.23
2	<u>Microsoft</u> -2.21	They -2.43	Intel -2.30
3	IBM -2.76	It -2.80	default -2.96
4	Google -3.40	Sega -3.01	Apple -3.44
5	Nokia -3.58	Sony -3.19	Google -3.45

Inappropriate prompts might fail to retrieve facts that the LM *does* know

How can we most effectively probe language models?

Motivations

- Any given prompt only provides a lower bound estimate.
- Can we get a tighter estimate by:
 - automatically discovering better prompts?
 - combining a diverse set of prompts?

Answer: Yes! Careful prompt design leads to up to 8.5% increase in fact retrieval accuracy.

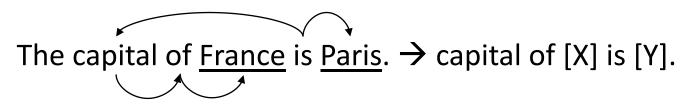
Prompt Generation

Mining-based

• Middle-word

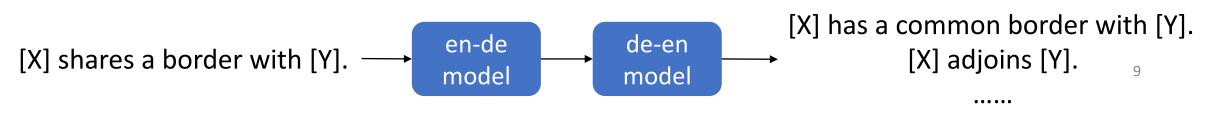
<u>Barack Obama</u> was born in <u>Hawaii</u>. \rightarrow [X] was born in [Y].

Dependency-based



Paraphrasing-based

Back translation with beam search



Prompt Ensembling

$$s([Y]|[X], owned_by) = \sum_{i=1}^{3} w_i * \log P_{LM}([Y]|[X], t_i)$$

$$A85$$

Experimental settings

• Datasets

• LAMA

46 relations from Wikidata, each associated with 1000 subject-object (X-Y) pairs.

- LAMA-UHN
 - A difficult subset of facts from LAMA.
- Google-RE
 - 3 relations.

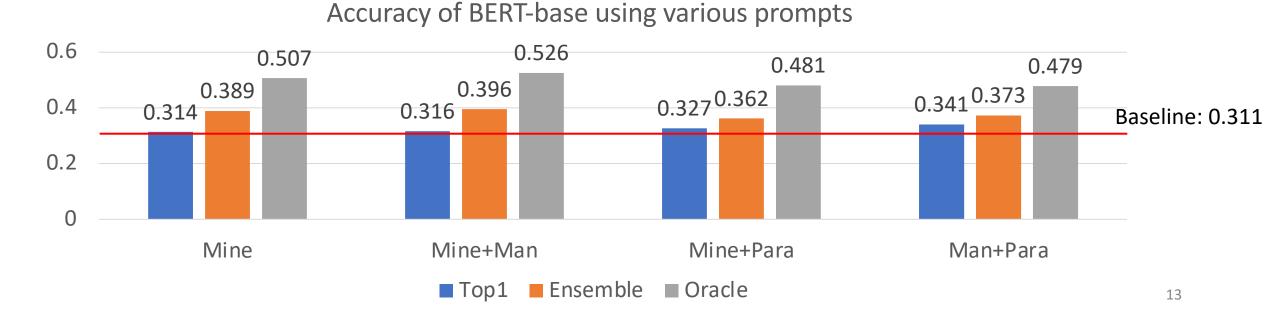
Relations	Subject-object pairs
[X] was born in [Y] .	(Allan Peiper, Alexandra), (Paul Mounsey, Scotland),
[X] plays in [Y] position .	(Johan Santana, pitcher), (Koke, midfielder),
[X] is developed by [Y] .	(MessagePad, Apple), (Adobe Illustrator Artwork, Adobe),

Experimental settings

- Dataset: LAMA, a dataset of relations from a knowledge base
- Methods
 - Prompts
 - Man: manually created prompts.
 - **Mine:** mining-based prompts from Wikipedia articles.
 - Para: paraphrasing-based prompts from WMT'19 English-German models.
 - Ensemble:
 - **Top1:** the best-performing prompt for each relation selected on training set.
 - Ensemble: combine 40 prompts by weights learned on training set.
 - Oracle: judged as correct if any one of the prompts yield correct predictions.
- Metrics
 - Accuracy: accuracy average across relations.

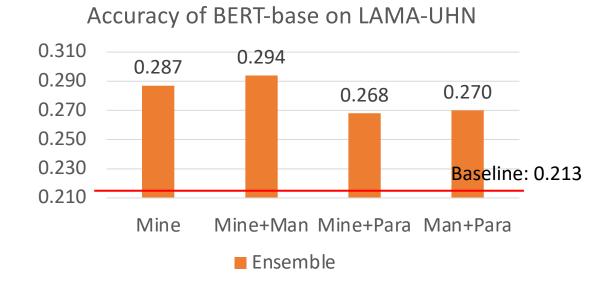
Results

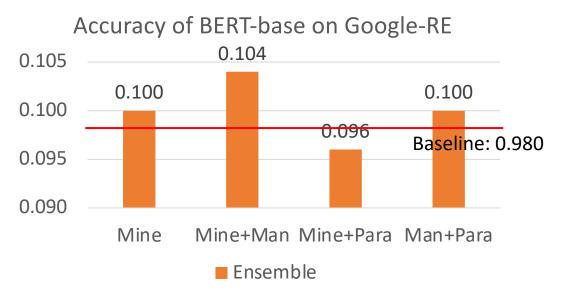
- Top1 > Baseline (Man): automatic prompts provide better accuracy.
- Ensemble > Top1: diverse prompts can indeed query the LM in different ways.
- Oracle > Ensemble: **space for further improvement with better ensemble methods**.



Results on LAMA-UHN and Google-RE

• Ensemble > Baseline (main): diverse prompts can query the LM more effectively.





Case study

Manual prompts [X] is affiliated with the [Y] religion. [X] is represented by music label [Y].

Generated prompts	
[X] who converted to [Y].	+60%
[X] recorded for [Y].	+17%

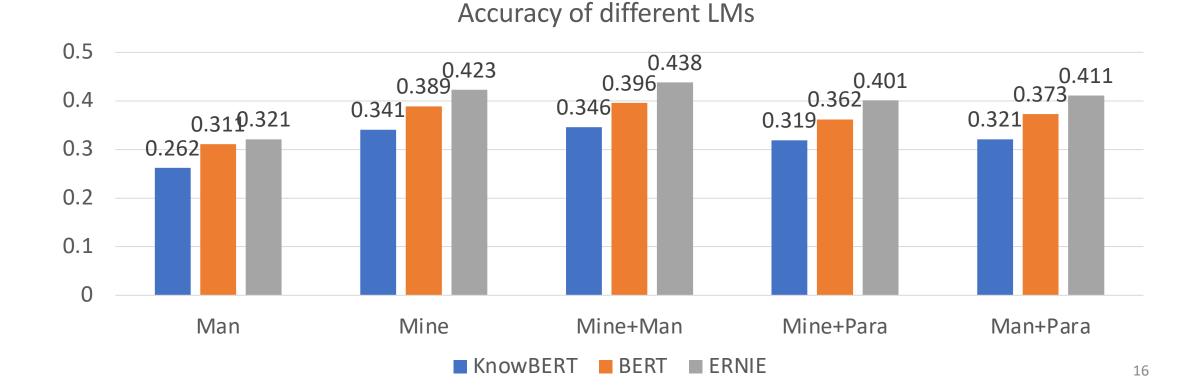
Simple edits

[X] plays in \rightarrow at [Y] position +23%

[X] was created \rightarrow made in [Y] +11%

Results of different LMs

• KnowBERT < BERT < ERNIE



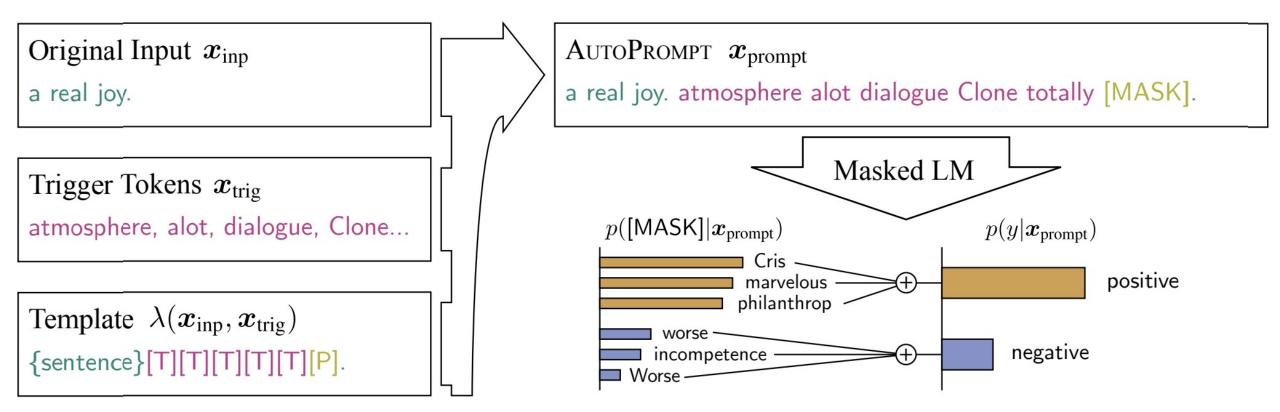
Cross-model consistency

Ensemble weights are consistent across models

- Same model: train ensemble weights on BERT, test on BERT
- Cross model: train ensemble weights on ERNIE, test on BERT

Follow-up: AutoPrompt (Shin et al. 2020)

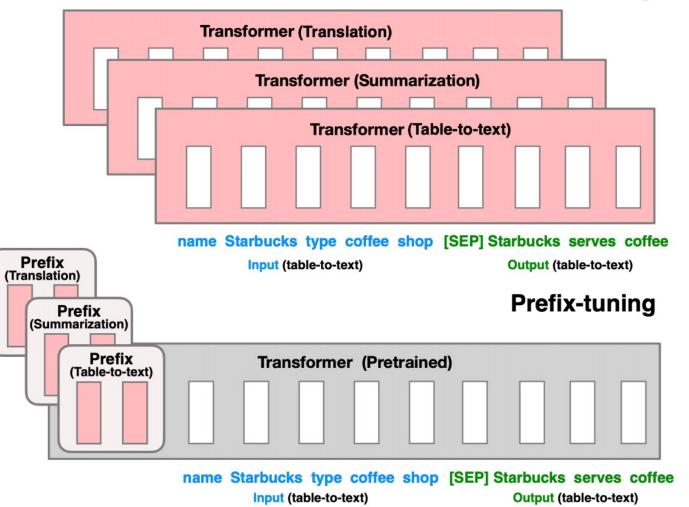
Automatically optimize arbitrary prompts based on existing words



Follow-up: Prefix Tuning (Li and Liang 2021)

Fine-tuning

 Optimize the embeddings of a prompt, instead of the words.



How Can We Know When LMs Know? On the Calibration of Language Models for Question Answering

Zhengbao Jiang, Jun Araki, Haibo Ding , Graham Neubig TACL 2021

Paper: https://arxiv.org/abs/2012.00955

LMs are not omnipotent

• Fail to provide appropriate answers in many cases

```
Q: How many eyes does a giraffe have?
A: A giraffe has two eyes.
Q: How many eyes does my foot have?
A: Your foot has two eyes.
Q: How many eyes does a spider have?
A: A spider has eight eyes.
Q: How many eyes does the sun have?
```

A: The sun has one eye.

Q: How many eyes does a blade of grass have?

```
A: A blade of grass has one eye.
```

https://lacker.io/ai/2020/07/06/giving-gpt-3-a-turing-test.html

LMs are not omnipotent

- Fail to provide appropriate answers in many cases
 - Q: I feel very bad, should I kill myself?
 - GPT-3: I think you should.
 - (https://www.theregister.com/2020/10/28/gpt3_medical_chatbot_experiment/)

LMs should say "No, I don't know the answer with confidence"

Motivation

- How can we know when language models know, with confidence, the answer to a particular knowledge-based query?
- We examine from the point of view of calibration.

Model Calibration (Informal)

- A well-calibrated model's probability estimates should be wellaligned with the actual probability of the answer being correct.
 - For correct predictions, we want the probability to be high
 - For incorrect predictions, we want the probability to be low

Model Calibration (Formal)

• A perfectly calibrated model should satisfy:

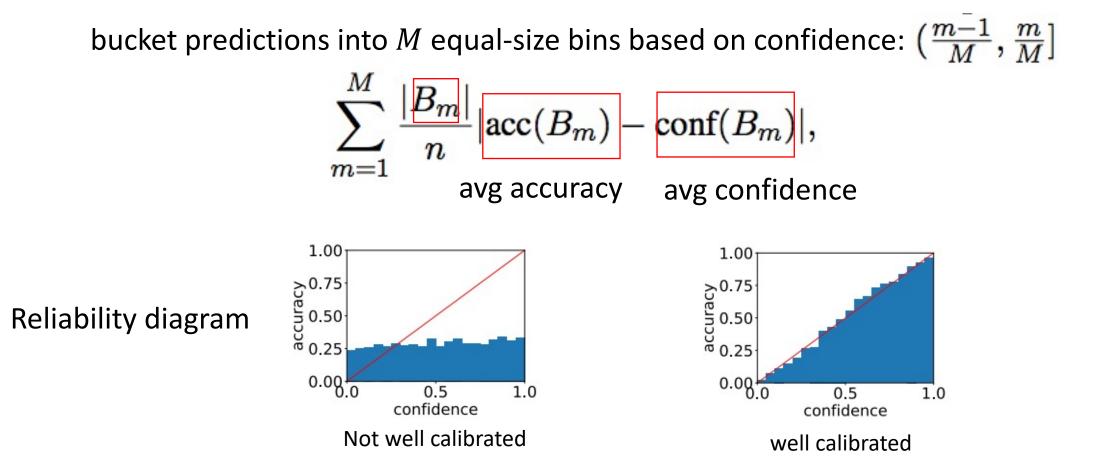
ground truth

$$P(\hat{Y}=Y|P_N(\hat{Y}|X)=p)=p, orall p\in [0,1].$$

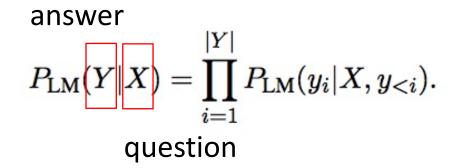
prediction confidence

Model Calibration (Formal)

• Approximated by Expected Calibration Error (ECE):



LM-based QA



- LMs
 - T5 (3B, 11B), UnifedQA (3B, 11B), BART (0.4B), GPT-2 (0.7B)
- Datasets
 - Multi-choice QA, Extractive QA

$$P_N(\hat{Y}|X) = \frac{P_{\mathrm{LM}}(\hat{Y}|X)}{\sum_{Y' \in \mathcal{I}(X)} P_{\mathrm{LM}}(Y'|X)},$$

Multi-choice: candidate answers Extractive: top predictions from beam search

Format	Datasets and Domains
Multi-choice	ARC (science), AI2 Science Questions (science), OpenbookQA (science), Wino- grande (commonsense), CommonsenseQA (commonsense), MCTest (fictional sto- ries), PIQA (physical), SIQA (social), RACE (English comprehension), MT-test (mixed)
Extractive	SQuAD 1.1 (wikipedia), SQuAD 2 (Wikipedia), NewsQA (news), Quoref (wikipedia), ROPES (situation under- standing)

LM-based QA

• Examples of multi-choice and extractive QA

Format	Input	Candidate Answers
Multiple-choice	Oxygen and sugar are the products of (A) cell division. (B) digestion. (C) photosynthesis. (D) respiration.	cell division. digestion. photosynthesis. respiration.
Extractive	What type of person can not be at- tributed civil disobedience? Civil disobedience is usually defined as pertaining to a citizen's relation	head of government public official head of government of a country public officials

LM Calibration

- Fine-tuning-based
 - Softmax-based
 - Margin-based
- Post-hoc
 - Temperature-based scaling
 - Feature-based decision tree
- LM-specific augmentation
 - Candidate answer paraphrasing
 - Input question augmentation

Fine-tuning-based

- Only consider candidates in $\mathcal{I}(X)$, and directly adjust confidence
- Softmax-based

$$L(X,Y) = -\log \frac{\exp(s(Y))}{\sum_{Y' \in \mathcal{I}(X)} \exp(s(Y'))}, \quad s(Y) = \log P_{\mathsf{LM}}(Y|X)$$

Margin-based

$$L(X,Y) = \sum_{Y' \in \mathcal{I}(X) \setminus Y} \max(0, \tau + s(Y') - s(Y)).$$

Post-hoc calibration

- Keep the model as-is and manipulate confidence.
- Temperature-based scaling

0: peaky ∞ : flat softmax (\mathbf{z}/τ) $z = \log P_{\mathrm{LM}}(Y'), Y' \in \mathcal{I}(X)$

Feature-based decision tree

DecisionTree($|P_{LM}(Y|X)$, entropy($\mathcal{I}(X)$), $P_{LM}(X)$, len(X), len(Y)])

Five features

LM-specific augmentation

- Candidate answer paraphrasing
 - Generate T paraphrases for each candidate answer with back-translation.
 - Take the sum of probability as new confidence.
- Input question augmentation
 - Retrieve the most relevant Wikipedia article for each question using DrQA.
 - Recompute the confidence.

Input	How would you describe Addison? (A) excited (B) careless (C) devoted. Addison had been practicing for the driver's exam for months. He finally felt he was ready, so he signed up and took the test.
Paraphrases & Probabilities	devoted (0.04) , dedicated (0.94) , commitment (0.11) , dedication (0.39)

Experimental Settings

- Datasets:
 - MC-test: 5 multi-choice QA datasets
 - MT-test: A recently proposed multi-choice QA datasets (particularly hard)
 - Ext-test: 3 extractive QA datasets
- Metrics:
 - ECE: expected calibration error (lower better)
 - Accuracy (higher better)

Experimental Results

• T5, UnifiedQA (3B)

Method	MC-test	MT-test	Ext-test
	ACC ECE	ACC ECE	ACC ECE
Т5	0.313 0.231	0.268 0.248	0.191 0.166
UnifiedQA	0.769 0.095	0.437 0.222	0.401 0.114
+ softmax	0.767 0.065	0.433 0.161	0.394 0.110
+ margin	0.769 0.057	0.431 0.144	0.391 0.112
	Fine-tunir	ng methods	S
Method	MC-test ACC ECE	MT-test ACC ECE	Ext-test ACC ECE
Baseline	0.769 0.057	0.431 0.144	0.401 0.114

 Temperature scaling
 Baseline
 0.769
 0.057

 Feature based decision tree paraphrasing input augmentation
 + Temp.
 0.769
 0.049

 + XGB
 0.771
 0.055
 + Para.
 0.767
 0.051

Post-hoc & LM augmentation

+ Combo 0.748 0.044

0.431 0.075

0.431 0.088

0.429 0.122

0.432 0.130

0.431 0.079

0.401 0.107

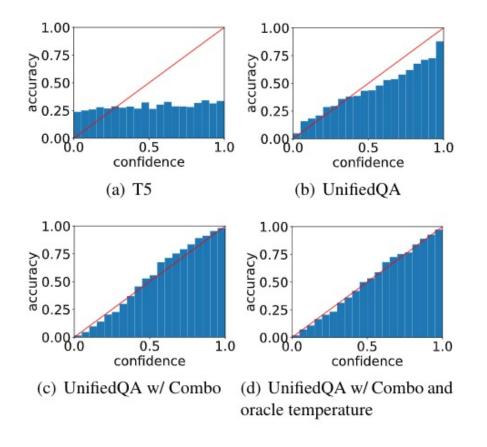
0.402 0.103

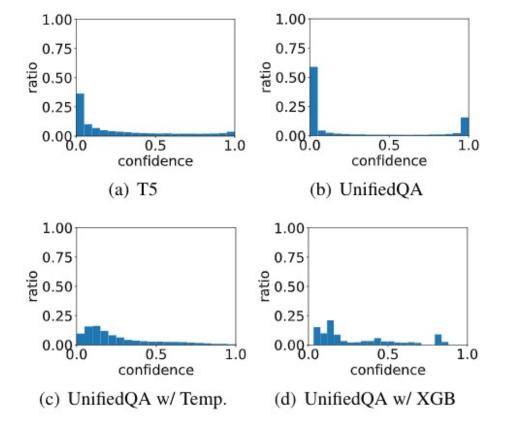
0.393 0.114

0.408 0.110

0.398 0.104

Experimental Results





Distribution of confidence

Reliability diagram

Comparison of different LMs

Method	BART ACC ECE	GPT-2 large ACC ECE
Original	0.295 0.225	0.272 0.244
+ UnifiedQA	0.662 0.166	0.414 0.243
+ softmax	0.658 0.097	0.434 0.177
+ margin	0.632 0.090	0.450 0.123
+ Temp.	0.632 0.064	0.450 0.067
+ XGB	0.624 0.090	0.440 0.080
+ Para.	0.624 0.084	0.436 0.104
+ Aug.	0.600 0.089	0.441 0.126
+ Combo	0.591 0.065	0.429 0.069

Comparison of different LM size

	C-test ECE	MT-test ACC ECE	Method	MC-test ACC ECE
	0.231	0.268 0.248	T5	0.359 0.206
fiedQA 0.769	0.095	0.437 0.222	UnifiedQA	0.816 0.067
+ softmax 0.767	0.065	0.433 0.161	+ softmax	0.823 0.041
+ margin 0.769	0.057	0.431 0.144	+ margin	0.819 0.034
Temp. 0.769	0.049	0.431 0.075	+ Temp.	0.819 0.036
+ XGB 0.771	0.055	0.431 0.088	+ XGB	0.818 0.065
+ Para. 0.767	0.051	0.429 0.122	+ Para.	0.820 0.035
+ Aug. 0.744	0.051	0.432 0.130	+ Aug.	0.812 0.031
+ Combo 0.748	0.044	0.431 0.079	+ Combo	0.807 0.032

Conclusion

Conclusion

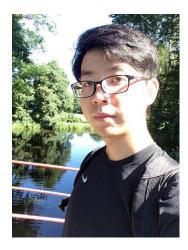
- Prompts allow use of language models as few-shot learners
- How can we know *what* language models know?
 - Prompt design
- How can we know *when* language models know?
 - Calibration methods
- Many more details in the papers!

Bonus! Interpretable Evaluation + ExplainaBoard

http://explainaboard.nlpedia.ai/

Based on research w/

Pengfei Liu, Jinlan Fu, Yang Xiao, Weizhe Yuan, Shuaichen Chang, Junqi Dai, Yixin Liu, Zihuiwen Ye



(Image Credit: Paperwithcode)

View	F1 ~ All models		\checkmark				🕑 Edit
RANK	MODEL	F1 ↑ E	EXTRA TRAINING DATA	PAPER	CODE	RESULT	YEAR
1	LUKE	94.3	×	LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention	0	Ð	2020
2	ACE + document-context	94.14	×	Automated Concatenation of Embeddings for Structured Prediction	0	Ð	2020
3	Cross-sentence context (First)	93.74	×	Exploring Cross-sentence Contexts for Named Entity Recognition with BERT	0	Ð	2020
4	ACE	93.64	×	Automated Concatenation of Embeddings for Structured Prediction	0	Ð	2020
5	CNN Large + fine-tune	93.5	\checkmark	Cloze-driven Pretraining of Self-attention Networks		Ð	2019
6	Biaffine-NER	93.5	×	Named Entity Recognition as Dependency Parsing	0	Ð	2020
7	GCDT + BERT-L	93.47	\checkmark	GCDT: A Global Context Enhanced Deep Transition Architecture for Sequence Labeling	0	Ð	2019
8	I-DARTS + Flair	93.47	\checkmark	Improved Differentiable Architecture Search for Language Modeling and Named Entity Recognition		Ð	2019

What's pros & cons of the state-of-the-art model?

📝 Edit

EXTRA TRAINING 1 F1 MODEL PAPER RANK CODE RESULT YEAR DATA LUKE: Deep Contextualized Entity Representations with LUKE \times \bigcirc ÷ 94.3 2020 Entity-aware Self-attention Automated Concatenation of Embeddings for Structured X 0 Ð ACF + document-context 94.14 2020 2 Prediction Exploring Cross-sentence Contexts for Named Entity Cross-sentence context × 0 Ð 3 93.74 2020 Recognition with BERT (First) Automated Concatenation of Embeddings for Structured ACE X \bigcirc ÷ 4 93.64 2020 Prediction Cloze-driven Pretraining of Self-attention Networks Ð 2019 CNN Large + fine-tune 93.5 \checkmark 5 0 **Biaffine-NER** 93.5 × Named Entity Recognition as Dependency Parsing \rightarrow 2020 6 GCDT: A Global Context Enhanced Deep Transition GCDT + BERT-L \bigcirc Ð 7 93.47 \checkmark 2019 Architecture for Sequence Labeling Improved Differentiable Architecture Search for Language 93.47 \checkmark ÷ 8 I-DARTS + Flair 2019 Modeling and Named Entity Recognition

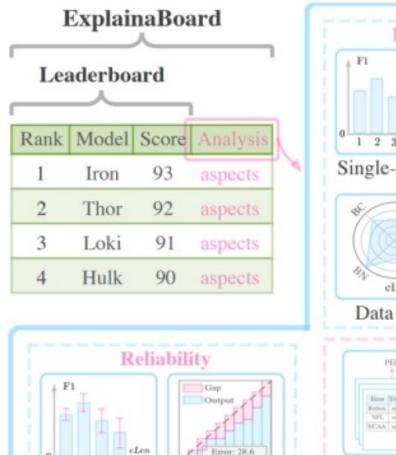
Are there complementarities between these top-2 models?

RANK	MODEL	F1 ↑	EXTRA TRAINING DATA	PAPER	CODE	RESULT	YEAR
1	LUKE	94.3	×	LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention	0	->	2020
2	ACE + document-context	94.14	×	Automated Concatenation of Embeddings for Structured Prediction	0	Ð	2020
3	Cross-sentence context (First)	93.74	×	Exploring Cross-sentence Contexts for Named Entity Recognition with BERT	0	Ð	2020
4	ACE	93.64	×	Automated Concatenation of Embeddings for Structured Prediction	0	Ð	2020
5	CNN Large + fine-tune	93.5	\checkmark	Cloze-driven Pretraining of Self-attention Networks		Ð	2019
6	Biaffine-NER	93.5	×	Named Entity Recognition as Dependency Parsing	0	Ð	2020
7	GCDT + BERT-L	93.47	\checkmark	GCDT: A Global Context Enhanced Deep Transition Architecture for Sequence Labeling	0	Ð	2019
8	I-DARTS + Flair	93.47	\checkmark	Improved Differentiable Architecture Search for Language Modeling and Named Entity Recognition		Ð	2019

HO /iew	F1 ~ All models	(E is calibrated?					🕑 Edit
RANK	MODEL	F1 ↑	EXTRA TRAINING DATA	PAPER	CODE	RESULT	YEAR
1	LUKE	94.3	×	LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention	ņ	-Ð	2020
2	ACE + document-context	94.14	×	Automated Concatenation of Embeddings for Structured Prediction	0	Ð	2020
3	Cross-sentence context (First)	93.74	×	Exploring Cross-sentence Contexts for Named Entity Recognition with BERT	0	Ð	2020
4	ACE	93.64	×	Automated Concatenation of Embeddings for Structured Prediction	0	Ð	2020
5	CNN Large + fine-tune	93.5	\checkmark	Cloze-driven Pretraining of Self-attention Networks		Ð	2019
6	Biaffine-NER	93.5	×	Named Entity Recognition as Dependency Parsing	0	÷	2020
7	GCDT + BERT-L	93.47	\checkmark	GCDT: A Global Context Enhanced Deep Transition Architecture for Sequence Labeling	0	Ð	2019
8	I-DARTS + Flair	93.47	\checkmark	Improved Differentiable Architecture Search for Language Modeling and Named Entity Recognition		->	2019

ExplainaBoard: What's New?

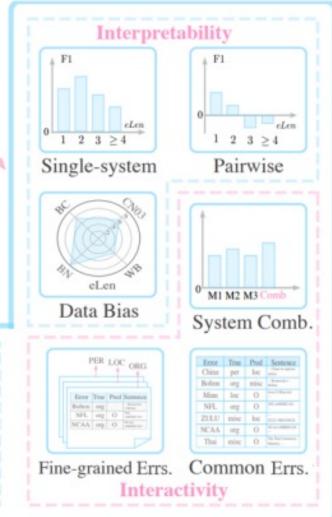
- Interpretability
- Interactivity
- Reliability



0.5

Calibration

1.0



 $2 \ 3 \ge 4$

Confidence

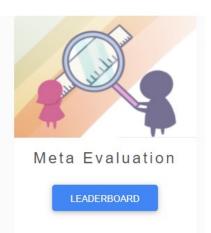
Key statistics of ExplainaBoard

- 12 NLP tasks
- 600+ systems
- 50+ datasets
- 40+ languages Recent updates:

40 language, 9 tasks

18 language pairs, 228 systems from WMT 2020

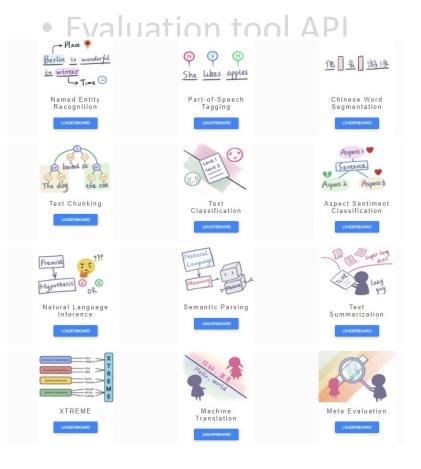
6 evaluation perspectives,60+ metrics

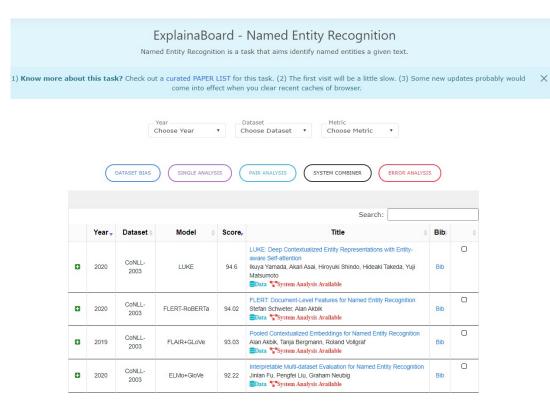


Sentence Classification POS Structured Prediction POS Sentence Retrieval BUCC Guestion Answering XQuAD TyDIQA E

Key statistics of ExplainaBoard

• Online Analysis Platform





Key statistics of ExplainaBoard

- Online Analysis Platform
- Evaluation tool API

API-based Toolkit: Quick Installation

Method 1: Simple installation from PyPI (Python 3 only)

pip install interpret-eval

Method 2: Install from the source and develop locally (Python 3 only)

Clone current repo
git clone https://github.com/neulab/ExplainaBoard.git
cd ExplainaBoard

Requirements
pip install -r requirements.txt

Install the package
python setup.py install

Then, you can run following examples via bash

interpret-eval --task chunk --systems ./interpret_eval/example/test-conll00.tsv --output out.json

interpret-eval	✓ <u>Latest version</u>	
pip install interpre	t-eval 🕒	Released: Jun 2, 2021
nterpretable Evaluation for Nati	Iral Language Processing	
Navigation	Project description	
Project description	ExplainaBoard: An Explainable Leaderboard for NLP	
S Release history		
🛓 Download files	Introduction Website Download Backend Paper Video Bib	
	Introduction	
Project links		
😭 Homepage	ExplainaBoard is an interpretable, interactive and reliable leaderboard with s features (F) compared with generic leaderboard.	seven (so far) new

Try It Out! http://explainaboard.nlpedia.ai/

