Carnegie Mellon University

(WIP)

GlobalBench: A Benchmark for Global Progress in Natural Language Processing

Graham Neubig

w/ Catherine Cui, Pengfei Liu, Fahim Faisal, Alissa Ostapenko, Yulia Tsvetkov, Antonios Anastasopoulos

and You!

https://github.com/neulab/globalbench

お手洗いはそちらの 青い建物にあります

お手洗いはそちらの 青い建物にあります

お手洗いはそちらの 青い建物にあります

The bathroom is in the blue building over there

We want to make the world a better place!

- We want to make the world a better place!
- How do we quantify "better"?

- We want to make the world a better place!
- How do we quantify "better"?
- Utility (economics): the total satisfaction received from consuming a good or service.

 American English Speaker: Use Google assistant, car navigation system, translate text, benefit from good search technology

 American English Speaker: Use Google assistant, car navigation system, translate text, benefit from good search technology

Japanese Speaker: Use the above technology, maybe with fewer features, maybe a bit worse

American English Speaker: Use Google assistant, car navigation system, translate text, benefit from good search technology

 Japanese Speaker: Use the above technology, maybe with fewer features, maybe a bit worse

 Marshalese Speaker: Don't use the above technology, or be forced to use it in a second language

 American English Speaker: Use Google assistant, car navigation system, translate text, benefit from good search technology

 Japanese Speaker: Use the above technology, maybe with fewer features, maybe a bit worse

 Marshalese Speaker: Don't use the above technology, or be forced to use it in a second language

• English Speaker with a Greek accent: Use Google assistant, car navigation system, translate text, benefit from good search technology

 Quantify disparities in language technology performance

 Quantify disparities in language technology performance Acc= 97.1 94.2 75.1

• Link performance to derived utility

Accuracy=94.2

 Quantify disparities in language technology performance Acc= 97.1 94.2 75.1

• Link performance to derived utility

Accuracy=94.2

• Mitigate disparities through research community incentives

. . .

XTREME

. . .

XTREME XGLUE

XTREME XGLUE

CoNLL 2018 Shared Task

XTREME XGLUE CONLL 2018 Shared Task

Very popular! But what does "multilingual" mean?

XTREME XGLUE CONLL 2018 Shared Task

- Very popular! But what does "multilingual" mean?
- XTREME: "availability of monolingual data, and typological diversity"

XTREME XGLUE CONLL 2018 Shared Task

- Very popular! But what does "multilingual" mean?
- XTREME: "availability of monolingual data, and typological diversity"
- XGLUE: ??? (as far as I can tell, not stated)

XTREME XGLUE CONLL 2018 Shared Task

- Very popular! But what does "multilingual" mean?
- XTREME: "availability of monolingual data, and typological diversity"
- XGLUE: ??? (as far as I can tell, not stated)

But what about people?!

(Blasi et al. 2022)

(Blasi et al. 2022)

(Blasi et al. 2022)

$$M = \sum_{i} u_{i}$$

(Blasi et al. 2022)

 A language technology should be measured by the utility it provides to every person in the world

$$M = \sum_{i} u_{i}$$

Two problems:

(Blasi et al. 2022)

$$M = \sum_{i} u_i$$

- Two problems:
 - Problem 1: how to measure utility of an NLP system?
 - → Very hard, use standard accuracy metrics as a proxy now (happy to discuss more!)

(Blasi et al. 2022)

$$M = \sum_{i} u_i$$

- Two problems:
 - Problem 1: how to measure utility of an NLP system?
 - → Very hard, use standard accuracy metrics as a proxy now (happy to discuss more!)
 - Problem 2: how to consider different utility provided to every person in the world?
 - → Measure over subgroups (here, languages), weighted by demand + coefficient τ.

(Blasi et al. 2022)

$$M = \sum_{i} u_i$$

- Two problems:
 - Problem 1: how to measure utility of an NLP system?
 - → Very hard, use standard accuracy metrics as a proxy now (happy to discuss more!)
 - Problem 2: how to consider different utility provided to every person in the world?
 - → Measure over subgroups (here, languages), weighted by demand + coefficient τ.

$$M_{\tau} = \sum_{l \in \mathcal{L}} d_l^{(\tau)} \cdot u_l$$

(Blasi et al. 2022)

 A language technology should be measured by the utility it provides to every person in the world

$$M = \sum_{i} u_i$$

- Two problems:
 - Problem 1: how to measure utility of an NLP system?
 - → Very hard, use standard accuracy metrics as a proxy now (happy to discuss more!)
 - Problem 2: how to consider different utility provided to every person in the world?
 - → Measure over subgroups (here, languages), weighted by demand + coefficient τ.

$$M_{\tau} = \sum_{l \in \mathcal{L}} d_l^{(\tau)} \cdot u_l$$

"normalized demand"

(Blasi et al. 2022)

 A language technology should be measured by the utility it provides to every person in the world

$$M = \sum_{i} u_i$$

- Two problems:
 - Problem 1: how to measure utility of an NLP system?
 - → Very hard, use standard accuracy metrics as a proxy now (happy to discuss more!)
 - Problem 2: how to consider different utility provided to every person in the world?
 - → Measure over subgroups (here, languages), weighted by demand + coefficient τ.

$$M_{\tau} = \sum_{l \in \mathcal{L}} d_l^{(\tau)} \cdot u_l$$

"normalized "utility" demand"

(Blasi et al. 2022)

$$M = \sum_{i} u_i$$

- Two problems:
 - Problem 1: how to measure utility of an NLP system?
 - → Very hard, use standard accuracy metrics as a proxy now (happy to discuss more!)
 - Problem 2: how to consider different utility provided to every person in the world?
 - → Measure over subgroups (here, languages), weighted by demand + coefficient τ.

$$M_{\tau} = \sum_{l \in \mathcal{L}} d_l^{(\tau)} \cdot u_l$$

$$d_l^{(\tau)} = \frac{n_l^{\tau}}{\sum_{l' \in \mathcal{L}} n_{l'}^{\tau}}$$

$$\text{demand}$$

$$\text{utility}$$

(Blasi et al. 2022)

 A language technology should be measured by the utility it provides to every person in the world

$$M = \sum_{i} u_i$$

Two problems:

demand"

- Problem 1: how to measure utility of an NLP system?
 - → Very hard, use standard accuracy metrics as a proxy now (happy to discuss more!)
- **Problem 2:** how to consider different utility provided to every person in the world?
 - → Measure over subgroups (here, languages), weighted by demand + coefficient τ.

$$M_{\tau} = \sum_{l \in \mathcal{L}} \boxed{d_l^{(\tau)}} \cdot \boxed{u_l} \qquad \qquad t=1 \text{ : every person equal ("demographic-average utility")}$$
 "normalized "utility"
$$\boxed{d_l^{(\tau)} = \frac{n_l^{\tau}}{\sum_{l' \in \mathcal{L}} n_{l'}^{\tau}}} \qquad \text{("demographic-average utility")}$$

(Blasi et al. 2022)

 A language technology should be measured by the utility it provides to every person in the world

$$M = \sum_{i} u_i$$

- Two problems:
 - Problem 1: how to measure utility of an NLP system?
 - → Very hard, use standard accuracy metrics as a proxy now (happy to discuss more!)
 - Problem 2: how to consider different utility provided to every person in the world?
 - → Measure over subgroups (here, languages), weighted by demand + coefficient τ.

$$M_{ au} = \sum_{l \in \mathcal{L}} d_l^{(au)} \cdot u_l$$
 "normalized "utility" demand"

$$d_l^{(\tau)} = \frac{n_l^{\tau}}{\sum_{l' \in \mathcal{L}} n_{l'}^{\tau}}$$

τ=1: every person equal("demographic-average utility")

τ=0 : every subgroup equal ("linguistic-average utility")

Zooming In

Dependency Parsing

Machine Translation to English

Zooming In

Dependency Parsing

Machine Translation to English

Demographic incentives

A Company of the company of

Financial incentives

Academic/professional incentives

Language technologies R&D

Demographic incentives

≈ number language users

Financial incentives

≈ approximate GDP associated with language

Which one better predicts the total number of papers on a given language?

While GDP and number of language users are correlated,

GDP predicts better the total number of papers published

on any specific language

How Can We Change our Incentives?

 GlobalBench: a benchmark to measure research community progress on equitable language technology

https://explainaboard.inspiredco.ai/benchmark?id=globalbench

GlobalBench May Help By

- Identifying which languages are not covered yet, or under-performing
- Rewarding submissions of *system* results for under-served languages
- Rewarding submissions of datasets for under-served languages

We Want You!

- Please submit datasets!
- Please submit systems!
- Please propose tasks!
- Please give us other ideas!

https://www.github.com/neulab/globalbench