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   तांदूळ 
 tandul 
‘raw rice’

       भात 
    bhaat 
‘cooked rice’
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• Word Embeddings  capture semantic/syntactic similarity ⟶

• BUT how to interpret what each dimension means?

1. SPINE: SParse Interpretable Neural Embeddings 
Anant Subramanian, Danish Pruthi, Harsh Jhamtani, Taylor Berg-Kirkpatrick, Eduard Hovy 

• SPINE1  sparse and non-negative transformation over pretrained embeddings⟶

Semantic similarity

Syntactic similarity

Multi-Aspect Information

dim-0: wrist, shoulder, ligament, ankle, thigh

dim-2: torque, joystick, grip, wrist, swinging

dim-1: extensively, adequately, traditionally, royally, fully
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Leaf 1:

After: 1000

Statistical threshold
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Significance 
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Effect 
Size

Observed distribution  
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Magnitude of  
significance is large
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Dominant order in the corpus

Features that lead to a leaf makes a rule

AUTOLEX: An Automatic Framework for Linguistic Exploration 
Chaudhary, Sheikh, Mortensen, Anastasopoulos, Neubig.   In Submission



27

Word Order: Visualize rules 
Rule: Adjective like “Primera” come before noun

AUTOLEX: An Automatic Framework for Linguistic Exploration 
Chaudhary, Sheikh, Mortensen, Anastasopoulos, Neubig.   In Submission



27

Word Order: Visualize rules 
Rule: Adjective like “Primera” come before noun

AUTOLEX: An Automatic Framework for Linguistic Exploration 
Chaudhary, Sheikh, Mortensen, Anastasopoulos, Neubig.   In Submission



27

Word Order: Visualize rules 

Exceptions!
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Automatic Extraction of Rules Governing Morphological Agreement 
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तो  
/that.M/  

आह े 
/is/

जेवतो 
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मुलगी  
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ती  
/that.F/

जेवते  
/eating.F/
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When should a head-dependent agree on 
gender and when it shouldn’t?

DET NOUN VERB AUX
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Results: Quality Evaluation
Does the model discover *new rules?

Even for well studied languages, 

system discovers *new rules  
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• Applied AutoLEX on Hmong Daw (mmw) which has NO syntactic parser available

— Discovered 30 rules for Subj-V, Obj-V, Num-N, Adj-N, Adp-N word orders 
     but, only 16% showed valid patterns 

— Zero-shot transfer using a multilingual UDIFY1 parser

175 Languages, 1 Model: Parsing Universal Dependencies Universally,  
  Kondratyuk and Straka, 2019

• Applied AutoLEX on Kannada (kan) which has NO syntactic parser  
but has related language data with small in-person data

— Few-shot transfer using a multilingual UDIFY1 parser with all available data

— For Subj-V, Obj-V word orders nearly 50% showed valid patterns 

With improvements in syntactic parser, quality of rules also improves!
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Analysis Applications

Subject Object Verb
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Education and 
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AutoLEX: Automatic 
Language Explorer
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• Computer-assisted language learning (CALL) systems are in high demand!

• AutoLEX has shown potential in doing some aspects of this automatically

• Creating a curriculum is a challenging process   grammar coverage, examples, exercises …⟶

Limited in  
language coverage!
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• Different languages carve up the semantic space differently

When is Wall a Pared and when a Muro? Extracting Rules Governing Lexical Selection  
Chaudhary, Yin, Anastasopoulos, Neubig.   EMNLP 2021

Outside

Inside 

• Crowdsourced study where participants recruited online had to predict correct word usage in context
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AutoLEX: Teacher Testimonials
The illustrative examples, and the grouped 
synonyms. It does need some work on accuracy 
in some places, but this is a great start! 

If this tool could be used to target the older kids it would be very helpful. However, the past 
present and future tenses of the verbs are interesting and this tool managed to impress me 
with the vast database, Unfortunately, the words used are very technical, and make excellent 
tool to improve writing skills.

Providing teachers the ability to input a curated set of data (stories 
written in good and correct language) to prepare relevant examples 
from may be helpful. Working more collaboratively will help us a lot 

I used this tool to teach an American adult 
who takes private lessons, found this tool 
helpful in addressing her grammar questions. 

given that these word pairs have been extracted from natural text, its interesting to see 
that there are certain word senses which are so frequently used in the real world which 
currently we haven't covered in our lesson but are we are now thinking of adding them.  



48

Other Applications



48

Other Applications

Language 
Descriptions



48

Other Applications

Language 
Descriptions

Automatic Multilingual Grammar Checker



48

Other Applications

Language 
Descriptions

Automatic Multilingual Grammar Checker



48

Other Applications

Language 
Descriptions

Automatic Multilingual Grammar Checker

Evaluating the Morphosyntactic Well-formedness of Generated Texts 
Pratapa, Anastasopoulos, RIjhwani, Chaudhary, Mortensen, Sheikh, Neubig, Tsvetkov.   EMNLP 2020



48

Other Applications

Language 
Descriptions

Evaluating the Morphosyntactic Well-formedness of Generated Texts 
Pratapa, Anastasopoulos, RIjhwani, Chaudhary, Mortensen, Sheikh, Neubig, Tsvetkov.   EMNLP 2020



48

Other Applications

Language 
Descriptions

Evaluating the Morphosyntactic Well-formedness of Generated Texts 
Pratapa, Anastasopoulos, RIjhwani, Chaudhary, Mortensen, Sheikh, Neubig, Tsvetkov.   EMNLP 2020

Evaluating Context-Usage in MT models



48

Other Applications

Language 
Descriptions

Evaluating the Morphosyntactic Well-formedness of Generated Texts 
Pratapa, Anastasopoulos, RIjhwani, Chaudhary, Mortensen, Sheikh, Neubig, Tsvetkov.   EMNLP 2020

When is Wall a Pared and when a Muro? Extracting Rules Governing Lexical Selection  
Chaudhary, Yin, Anastasopoulos, Neubig.   EMNLP 2021

Evaluating Context-Usage in MT models



48

Other Applications

Language 
Descriptions

Evaluating the Morphosyntactic Well-formedness of Generated Texts 
Pratapa, Anastasopoulos, RIjhwani, Chaudhary, Mortensen, Sheikh, Neubig, Tsvetkov.   EMNLP 2020

Evaluating Context-Usage in MT models

Do Context-Aware Translation Models Pay the Right Attention? 
Yin, Fernandes, Pruthi, Chaudhary, Martins, Neubig.   ACL 2021



48

Other Applications

Language 
Descriptions

Evaluating the Morphosyntactic Well-formedness of Generated Texts 
Pratapa, Anastasopoulos, RIjhwani, Chaudhary, Mortensen, Sheikh, Neubig, Tsvetkov.   EMNLP 2020

Evaluating Context-Usage in MT models

Do Context-Aware Translation Models Pay the Right Attention? 
Yin, Fernandes, Pruthi, Chaudhary, Martins, Neubig.   ACL 2021



49

Contributions



49

Contributions

• AutoLEX: framework to extract and visualize language descriptions



49

Contributions

• AutoLEX: framework to extract and visualize language descriptions



49

Contributions

• AutoLEX: framework to extract and visualize language descriptions

http://www.autolex.co/interface/



49

Contributions

• AutoLEX: framework to extract and visualize language descriptions

http://www.autolex.co/interface/

• Real-World Utility: established collaborations with teacher communities



49

Contributions

• AutoLEX: framework to extract and visualize language descriptions

http://www.autolex.co/interface/

• Real-World Utility: established collaborations with teacher communities

• Under-Resourced NLP: effectively utilize existing data and collect new data



50

(Low-resource) Language 
Analysis Applications

Subject Object Verb

Language 
Education and 
Documentation

AutoLEX: Automatic 
Language Explorer

https://www.autolex.co/



50

(Low-resource) Language 
Analysis Applications

Subject Object Verb

Language 
Education and 
Documentation

AutoLEX: Automatic 
Language Explorer

https://www.autolex.co/
What’s Next?



50

(Low-resource) Language 
Analysis Applications

Subject Object Verb

Language 
Education and 
Documentation

AutoLEX: Automatic 
Language Explorer

https://www.autolex.co/

• We demonstrated utility on 4 languages, about 7,000 more to go
What’s Next?



50

(Low-resource) Language 
Analysis Applications

Subject Object Verb

Language 
Education and 
Documentation

AutoLEX: Automatic 
Language Explorer

https://www.autolex.co/

• We demonstrated utility on 4 languages, about 7,000 more to go
• Low-resource language analysis still doesn’t work well enough

What’s Next?



50

(Low-resource) Language 
Analysis Applications

Subject Object Verb

Language 
Education and 
Documentation

AutoLEX: Automatic 
Language Explorer

https://www.autolex.co/

• We demonstrated utility on 4 languages, about 7,000 more to go
• Low-resource language analysis still doesn’t work well enough
• Better rule extraction methods

What’s Next?



50

(Low-resource) Language 
Analysis Applications

Subject Object Verb

Language 
Education and 
Documentation

AutoLEX: Automatic 
Language Explorer

https://www.autolex.co/

• We demonstrated utility on 4 languages, about 7,000 more to go
• Low-resource language analysis still doesn’t work well enough
• Better rule extraction methods
• Close link w/ data provenance (conversational text >> legal text)

What’s Next?


