NAIST NLP Programming Tutorial 1 — Unigram Language Model

NLP Programming Tutorial 1 -
Unigram Language Models

Graham Neubig
Nara Institute of Science and Technology (NAIST)

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Language Model Basics

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Why Language Models?

 We have an English speech recognition system, which
answer is better?

W_ = speech recognition

Speech system
‘ ' | W, = speech cognition

system

W, = speck podcast

histamine

W, = AE=F MV, A b

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Why Language Models?

 We have an English speech recognition system, which
answer is better?

W_ = speech recognition

Speech system /
’ ' | W, = speech cognition

system

W, = speck podcast

histamine

W, = AE=F MV, A b

* Language models tell us the answer!

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Probabilistic Language Models

« Language models assign a probability to each
sentence

W, = speech recognition P(W)=4.021*10°

system Y A
W, = speech cognition P(VVZ) =8.932* 10

system

W_ = speck podcast P(W,) =2.432* 10"
histamine

W,= RE—F AR ARy P(W)=9.124* 10%

. We want P(W1) > P(Wz) > P(W3) > P(W4)
o (or P(W,)>P(W,), P(W,), P(W,) for Japanese?)

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Calculating Sentence Probabilities

* We want the probability of
W = speech recognition system

* Represent this mathematically as:

P(IW| =3, w ="speech”, w_="recognition”, w_="system”)

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Calculating Sentence Probabilities

* \We want the probability of
W = speech recognition system

* Represent this mathematically as (using chain rule):

P(JW| = 3, w ="speech”, w_="recognition”, w_="system”) =

P(w ="speech” | w = "<s>")

* P(w_="recognition” | w_= “<s>" w ="“speech”
2 0 1

* P(w_="system” | w_= “<s>" w =“speech”, w ="recognition”
3 0 1 2

* P(w,="</[s>" | w_ = "<s>", w ="speech”, w_="recognition”, w_="system”)

NOTE: NOTE:
sentence start <s> and end </s> symbol P(w =<s>)=1

7

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Incremental Computation

* Previous equation can be written:

W+ 1
P<W):Hi:1 P(w|wy...w, ;)

 How do we decide probability?

P(Wi|WO°'°Wi—1)

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Maximum Likelihood Estimation

» Calculate word strings in corpus, take fraction

c(wi...w,)

P<Wi‘w1°°-wi1):C(W W)
1---Wiog

| live In osaka . </s>
| am a graduate student . </s>
my school Is In nara . </s>

P(live | <s>1) =c(<s>1live)lc(<s>1)=1/2=0.5
P(am | <s>1) =c(<s>1am)lc(<s>1)=1/2=0.5

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Problem With Full Estimation

e \Weak when counts are low:

o | live in osaka . </s>
Training: j am a graduate student . </s>
my school is Iin nara . </s>

<s> | live In nara . </s>

Test: P(naral<s> |

d
¢

ive in) =0/1 =0

P(W=<s>iIliveinnara.</s>) =0 10

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Unigram Model

* Do not use history:

C(Wi)
P(Wi‘wl"'wi—l)mp(wi): N
2., c(w)
i live in osaka . </s> P(nara) = 1/20 = 0.05
| am a graduate student . </s> P(i) =2/20=0.1
my school Is In nara . </s> P(</s>) =3/20 = 0.15

P(W=ilive in nara . </s>) =
01*005*0.1*005*015*0.15=5625 * 10_7

11

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Be Careful of Integers!

« Divide two integers, you get an integer (rounded down)

first int = 1
second _int = 2

print(first_int/second_int)

$./my-program.py
0]

« Convert one integer to a float, and you will be OK

print(float(first_int)/second_int)

$./my-program.py b
©.5

NAIST NLP Programming Tutorial 1 — Unigram Language Model

What about Unknown Words?!

 Simple ML estimation doesn't work

i live in osaka . </s> P(nara) = 1/20 = 0.05
| am a graduate student . </s>-—»P(j) =2/20=0.1
my school is in nara . </s> P(kyoto) = 0/20 = 0

» Often, unknown words are ignored (ASR)
» Better way to solve

. Save some probability for unknown words (A _ = 1-A.)

» Guess total vocabulary size (N), including unknowns

u

P(w;)=h; Py (w;)+ (1_7\1)%

13

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Unknown Word Example

» Total vocabulary size: N=10°
» Unknown word probability: A =0.05 (A, = 0.95)

1

P(Wi):kl PML(WI')+ (1_7\1)N
b(nara) = 0.95*0.05 + 0.05%(1/10°) = 0.04750005
o) =0.95%0.10 + 0.05%(1/10°%) = 0.09500005

b(kyoto) = 0.95*0.00 + 0.05*(1/10°) = 0.00000005

14

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Evaluating Language Models

15

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Experimental Setup

* Use training and test sets

Training Data

I live in osaka

i am a graduate student Train]
my school is in nara Model
Test
Testing Data Model
Ty Tap—— \ Model Accuracy
| am a student Likelihood
| have lots of homework o r.
Log Likelihood
Entropy

Perplexity 16

NAIST

NLP Programming Tutorial 1 — Unigram Language Model

Likelihood

» Likelihood is the probability of some observed data
(the test set W__), given the model M

st

P(Wtest‘M) :HWEWW P (W‘M)

| live In nara
| am a student

my classes are hard

P(w="i live In nara’|M) = 5 52*1 (2L
X

P(w="I am a student”|M) = 3 48*1 019
X

P(w="my classes are hard"|M) = 2.15*10*

1.89*10°"°

17

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Log Likelihood

» Likelihood uses very small numbers=underflow

* Taking the log resolves this problem

log P(Wo|M)=2_ ., logP(w|M)

A log P(w="1live In nara”’|M) = -20.58
| live In nara +
i am a student log P(w="I am a student”’|M) = -18.45
+
my classes are hard = |og P(w="my classes are hard”|M) = -33.67

-72.60

18

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Calculating Logs

« Python's math package has a function for logs
import math

print(math.log(100)) # 1n(100)
print(math.log(100, 10)) # logl0(100)

$./my-program.py
4.60517018599

2.0

19

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Entropy
- Entropy H Is average negative log, likelihood per word
1
H (W oolM)=rm—2.,c, —log,P(w|M)
| test | et
T log, P(w="1 live in nara’|M)= (684}43
i am a student log, P(w="I am a student”|M)= 61.32

my classes are hard | log, P(w="my classes are hard’|[M)= 111.84)

/
of words= 12

20.13

20
* note, we can also count </s> in # of words (in which case it is 15)

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Perplexity

» Equal to two to the power of per-word entropy
pPPL=2"

* (Mainly because it makes more impressive numbers)

* For uniform distributions, equal to the size of
vocabulary

08,

1 —1
V=5 H=-log,z PPL=2"=2 °=2"""=5

21

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Coverage

* The percentage of known words in the corpus

a bird a cat a dog a </s>
/

“dog” Is an unknown word

Coverage: 7/8 *

* often omit the sentence-final symbol - 6/7

22

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Exercise

23

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Exercise

* Write two programs

 train-unigram: Creates a unigram model

» test-unigram: Reads a unigram model and calculates
entropy and coverage for the test set

» Test them test/01-train-input.txt test/01-test-input.txt
 Train the model on data/wiki-en-train.word

» Calculate entropy and coverage on data/wiki-en-
test.word

* Report your scores next week

24

NAIST NLP Programming Tutorial 1 — Unigram Language Model

train-unigram Pseudo-Code

create a map counts
create a variable total count=0

for each line In the training file
split line into an array of words
append “</s>" to the end of words
for each word in words
add 1 to counts[word]
add 1 to total count

open the model_file for writing

for each word, count in counts
probability = counts[word]/total _count
print word, probability to model_file

25

NAIST NLP Programming Tutorial 1 — Unigram Language Model

test-unigram Pseudo-Code
A, =095 A =1-A, V=1000000, W=0,H=0

L oad Model Test and Print
create a map probabilities for each line in test file
for each /ine in model_file split /ine into an array of words
split /ine into w and P append “</s>" to the end of words
set probabilities[w] = P for each w in words
add 1 to W

setP=A_ [V
If probabillities[w] exists

set P += A * probabilities|w]
else

add 1 to unk
add -log, P to H

print “entropy = "+H/W 26
print “coverage =" + (W-unk)/W

NAIST NLP Programming Tutorial 1 — Unigram Language Model

Thank You!

27

