
 1

NLP Programming Tutorial 1 – Unigram Language Model

NLP Programming Tutorial 1 -
Unigram Language Models

Graham Neubig
Nara Institute of Science and Technology (NAIST)

 2

NLP Programming Tutorial 1 – Unigram Language Model

Language Model Basics

 3

NLP Programming Tutorial 1 – Unigram Language Model

Why Language Models?

● We have an English speech recognition system, which
answer is better?

Speech
W

1
 = speech recognition

system
W

2
 = speech cognition

system

W
4
 = スピーチ が 救出 ストン

W
3
 = speck podcast

histamine

 4

NLP Programming Tutorial 1 – Unigram Language Model

Why Language Models?

● We have an English speech recognition system, which
answer is better?

Speech
W

1
 = speech recognition

system
W

2
 = speech cognition

system

W
4
 = スピーチ が 救出 ストン

W
3
 = speck podcast

histamine

● Language models tell us the answer!

 5

NLP Programming Tutorial 1 – Unigram Language Model

Probabilistic Language Models

● Language models assign a probability to each
sentence

W
1
 = speech recognition

system
W

2
 = speech cognition

system

W
4
 = スピーチ が 救出 ストン

W
3
 = speck podcast

histamine

P(W
1
) = 4.021 * 10-3

P(W
2
) = 8.932 * 10-4

P(W
3
) = 2.432 * 10-7

P(W
4
) = 9.124 * 10-23

● We want P(W
1
) > P(W

2
) > P(W

3
) > P(W

4
)

● (or P(W
4
) > P(W

1
), P(W

2
), P(W

3
) for Japanese?)

 6

NLP Programming Tutorial 1 – Unigram Language Model

Calculating Sentence Probabilities

● We want the probability of

● Represent this mathematically as:

W = speech recognition system

P(|W| = 3, w
1
=”speech”, w

2
=”recognition”, w

3
=”system”)

 7

NLP Programming Tutorial 1 – Unigram Language Model

Calculating Sentence Probabilities

● We want the probability of

● Represent this mathematically as (using chain rule):

W = speech recognition system

P(|W| = 3, w
1
=”speech”, w

2
=”recognition”, w

3
=”system”) =

P(w
1
=“speech” | w

0
 = “<s>”)

* P(w
2
=”recognition” | w

0
 = “<s>”, w

1
=“speech”)

* P(w
3
=”system” | w

0
 = “<s>”, w

1
=“speech”, w

2
=”recognition”)

* P(w
4
=”</s>” | w

0
 = “<s>”, w

1
=“speech”, w

2
=”recognition”, w

3
=”system”)

NOTE:
sentence start <s> and end </s> symbol

NOTE:
P(w

0
 = <s>) = 1

 8

NLP Programming Tutorial 1 – Unigram Language Model

Incremental Computation

● Previous equation can be written:

● How do we decide probability?

P(W)=∏i=1

∣W∣+ 1
P(wi∣w0…wi−1)

P(wi∣w0…wi−1)

 9

NLP Programming Tutorial 1 – Unigram Language Model

Maximum Likelihood Estimation

● Calculate word strings in corpus, take fraction

P(wi∣w1…w i−1)=
c (w1…wi)
c (w1…w i−1)

i live in osaka . </s>
i am a graduate student . </s>
my school is in nara . </s>

P(am | <s> i) = c(<s> i am)/c(<s> i) = 1 / 2 = 0.5

P(live | <s> i) = c(<s> i live)/c(<s> i) = 1 / 2 = 0.5

 10

NLP Programming Tutorial 1 – Unigram Language Model

Problem With Full Estimation

● Weak when counts are low:

i live in osaka . </s>
i am a graduate student . </s>
my school is in nara . </s>

Training:

P(W=<s> i live in nara . </s>) = 0

<s> i live in nara . </s>

P(nara|<s> i live in) = 0/1 = 0Test:

 11

NLP Programming Tutorial 1 – Unigram Language Model

Unigram Model

● Do not use history:

P(wi∣w1…w i−1)≈P(wi)=
c (wi)

∑w̃
c (w̃)

P(nara) = 1/20 = 0.05i live in osaka . </s>
i am a graduate student . </s>
my school is in nara . </s>

P(i) = 2/20 = 0.1
P(</s>) = 3/20 = 0.15

P(W=i live in nara . </s>) =
 0.1 * 0.05 * 0.1 * 0.05 * 0.15 * 0.15 = 5.625 * 10-7

 12

NLP Programming Tutorial 1 – Unigram Language Model

Be Careful of Integers!

● Divide two integers, you get an integer (rounded down)

$./my-program.py
0

$./my-program.py
0.5

● Convert one integer to a float, and you will be OK

 13

NLP Programming Tutorial 1 – Unigram Language Model

What about Unknown Words?!
● Simple ML estimation doesn't work

● Often, unknown words are ignored (ASR)

● Better way to solve

● Save some probability for unknown words (λ
unk

 = 1-λ
1
)

● Guess total vocabulary size (N), including unknowns

i live in osaka . </s>
i am a graduate student . </s>
my school is in nara . </s>

P(nara) = 1/20 = 0.05
P(i) = 2/20 = 0.1
P(kyoto) = 0/20 = 0

P(wi)=λ1 PML(wi)+ (1−λ1)
1
N

 14

NLP Programming Tutorial 1 – Unigram Language Model

Unknown Word Example

● Total vocabulary size: N=106

● Unknown word probability: λ
unk

=0.05 (λ
1
 = 0.95)

P(nara) = 0.95*0.05 + 0.05*(1/106) = 0.04750005

P(i) = 0.95*0.10 + 0.05*(1/106) = 0.09500005

P(wi)=λ1 PML(wi)+ (1−λ1)
1
N

P(kyoto) = 0.95*0.00 + 0.05*(1/106) = 0.00000005

 15

NLP Programming Tutorial 1 – Unigram Language Model

Evaluating Language Models

 16

NLP Programming Tutorial 1 – Unigram Language Model

Experimental Setup

● Use training and test sets

i live in osaka
i am a graduate student

my school is in nara
...

i live in nara
i am a student

i have lots of homework
…

Training Data

Testing Data

Train
Model Model

Test
Model

Model Accuracy

Likelihood
Log Likelihood
Entropy
Perplexity

 17

NLP Programming Tutorial 1 – Unigram Language Model

Likelihood

● Likelihood is the probability of some observed data
(the test set W

test
), given the model M

i live in nara

i am a student

my classes are hard

P(w=”i live in nara”|M) = 2.52*10-21

P(w=”i am a student”|M) = 3.48*10-19

P(w=”my classes are hard”|M) = 2.15*10-34

P(W test∣M)=∏w∈W test

P (w∣M)

1.89*10-73

x

x

=

 18

NLP Programming Tutorial 1 – Unigram Language Model

Log Likelihood

● Likelihood uses very small numbers=underflow

● Taking the log resolves this problem

i live in nara

i am a student

my classes are hard

log P(w=”i live in nara”|M) = -20.58

log P(w=”i am a student”|M) = -18.45

log P(w=”my classes are hard”|M) = -33.67

log P(W test∣M)=∑w∈W test

log P(w∣M)

-72.60

+

+

=

 19

NLP Programming Tutorial 1 – Unigram Language Model

Calculating Logs

● Python's math package has a function for logs

$./my-program.py
4.60517018599
2.0

 20

NLP Programming Tutorial 1 – Unigram Language Model

Entropy

● Entropy H is average negative log
2
 likelihood per word

H (W test∣M)=
1

|W test |
∑w∈W test

−log2P (w∣M)

i live in nara

i am a student

my classes are hard

log
2
 P(w=”i live in nara”|M)= (68.43

log
2
 P(w=”i am a student”|M)= 61.32

log
2
 P(w=”my classes are hard”|M)= 111.84)

+

+

/
12
=

20.13

of words=

* note, we can also count </s> in # of words (in which case it is 15)

 21

NLP Programming Tutorial 1 – Unigram Language Model

Perplexity

● Equal to two to the power of per-word entropy

● (Mainly because it makes more impressive numbers)

● For uniform distributions, equal to the size of
vocabulary

PPL=2H

H=−log2
1
5

V=5 PPL=2H=2
−log2

1
5=2 log2 5=5

 22

NLP Programming Tutorial 1 – Unigram Language Model

Coverage

● The percentage of known words in the corpus

a bird a cat a dog a </s>

“dog” is an unknown word

Coverage: 7/8 *

* often omit the sentence-final symbol → 6/7

 23

NLP Programming Tutorial 1 – Unigram Language Model

Exercise

 24

NLP Programming Tutorial 1 – Unigram Language Model

Exercise

● Write two programs
● train-unigram: Creates a unigram model
● test-unigram: Reads a unigram model and calculates

entropy and coverage for the test set
● Test them test/01-train-input.txt test/01-test-input.txt

● Train the model on data/wiki-en-train.word

● Calculate entropy and coverage on data/wiki-en-
test.word

● Report your scores next week

 25

NLP Programming Tutorial 1 – Unigram Language Model

train-unigram Pseudo-Code

create a map counts
create a variable total_count = 0

for each line in the training_file
 split line into an array of words
 append “</s>” to the end of words
 for each word in words
 add 1 to counts[word]
 add 1 to total_count

open the model_file for writing
for each word, count in counts
 probability = counts[word]/total_count
 print word, probability to model_file

 26

NLP Programming Tutorial 1 – Unigram Language Model

test-unigram Pseudo-Code
λ

1
 = 0.95, λ

unk
 = 1-λ

1
,

V = 1000000, W = 0, H = 0

create a map probabilities
for each line in model_file
 split line into w and P
 set probabilities[w] = P

for each line in test_file
 split line into an array of words
 append “</s>” to the end of words
 for each w in words
 add 1 to W
 set P = λ

unk
 / V

 if probabilities[w] exists
 set P += λ

1
 * probabilities[w]

 else
 add 1 to unk
 add -log

2
 P to H

print “entropy = ”+H/W
print “coverage = ” + (W-unk)/W

Load Model Test and Print

 27

NLP Programming Tutorial 1 – Unigram Language Model

Thank You!

