
 1

NLP Programming Tutorial 2 – Bigram Language Model

NLP Programming Tutorial 2 -
Bigram Language Models

Graham Neubig
Nara Institute of Science and Technology (NAIST)

 2

NLP Programming Tutorial 2 – Bigram Language Model

Review:
Calculating Sentence Probabilities

● We want the probability of

● Represent this mathematically as:

W = speech recognition system

P(|W| = 3, w
1
=”speech”, w

2
=”recognition”, w

3
=”system”) =

P(w
1
=“speech” | w

0
 = “<s>”)

* P(w
2
=”recognition” | w

0
 = “<s>”, w

1
=“speech”)

* P(w
3
=”system” | w

0
 = “<s>”, w

1
=“speech”, w

2
=”recognition”)

* P(w
4
=”</s>” | w

0
 = “<s>”, w

1
=“speech”, w

2
=”recognition”, w

3
=”system”)

NOTE:
sentence start <s> and end </s> symbol

NOTE:
P(w

0
 = <s>) = 1

 3

NLP Programming Tutorial 2 – Bigram Language Model

Incremental Computation

● Previous equation can be written:

● Unigram model ignored context:

P(W)=∏i=1

∣W∣+ 1
P(wi∣w0…wi−1)

P(wi∣w0…wi−1)≈P (w i)

 4

NLP Programming Tutorial 2 – Bigram Language Model

Unigram Models Ignore Word Order!

● Ignoring context, probabilities are the same:

P
uni

(w=speech recognition system) =

 P(w=speech) * P(w=recognition) * P(w=system) * P(w=</s>)

P
uni

(w=system recognition speech) =

 P(w=speech) * P(w=recognition) * P(w=system) * P(w=</s>)

=

 5

NLP Programming Tutorial 2 – Bigram Language Model

Unigram Models Ignore Agreement!

● Good sentences (words agree):

● Bad sentences (words don't agree)

P
uni

(w=i am) =

 P(w=i) * P(w=am) * P(w=</s>)

P
uni

(w=i are) =

 P(w=i) * P(w=are) * P(w=</s>)

P
uni

(w=we am) =

 P(w=we) * P(w=am) * P(w=</s>)

P
uni

(w=we are) =

 P(w=we) * P(w=are) * P(w=</s>)

But no penalty because probabilities are independent!

 6

NLP Programming Tutorial 2 – Bigram Language Model

Solution: Add More Context!

● Unigram model ignored context:

● Bigram model adds one word of context

● Trigram model adds two words of context

● Four-gram, five-gram, six-gram, etc...

P(wi∣w0…wi−1)≈P (w i)

P(wi∣w0…wi−1)≈P (w i∣wi−1)

P(wi∣w0…wi−1)≈P (w i∣wi−2w i−1)

 7

NLP Programming Tutorial 2 – Bigram Language Model

Maximum Likelihood Estimation
of n-gram Probabilities

● Calculate counts of n word and n-1 word strings

P(wi∣w i−n+ 1…wi−1)=
c (w i−n+ 1…wi)

c (wi−n+ 1…wi−1)

i live in osaka . </s>
i am a graduate student . </s>
my school is in nara . </s>

P(nara | in) = c(in nara)/c(in) = 1 / 2 = 0.5

P(osaka | in) = c(in osaka)/c(in) = 1 / 2 = 0.5
n=2 →

 8

NLP Programming Tutorial 2 – Bigram Language Model

Still Problems of Sparsity

● When n-gram frequency is 0, probability is 0

● Like unigram model, we can use linear interpolation

P(nara | in) = c(i nara)/c(in) = 1 / 2 = 0.5

P(osaka | in) = c(i osaka)/c(in) = 1 / 2 = 0.5

P(school | in) = c(in school)/c(in) = 0 / 2 = 0!!

P(wi∣w i−1)=λ2 PML (w i∣wi−1)+ (1−λ2)P(wi)

P(wi)=λ1 PML(wi)+ (1−λ1)
1
N

Bigram:

Unigram:

 9

NLP Programming Tutorial 2 – Bigram Language Model

Choosing Values of λ: Grid Search

● One method to choose λ
2
, λ

1
: try many values

λ2=0.95,λ1=0.95

Too many options
→ Choosing takes time!

Using same λ for all n-grams
→ There is a smarter way!

Problems:
λ2=0.95,λ1=0.90
λ2=0.95,λ1=0.85

λ2=0.95,λ1=0.05
λ2=0.90,λ1=0.95
λ2=0.90,λ1=0.90

λ2=0.05,λ1=0.05
λ2=0.05,λ1=0.10

…

…

 10

NLP Programming Tutorial 2 – Bigram Language Model

Context Dependent Smoothing

● Make the interpolation depend on the context

High frequency word: “Tokyo”

c(Tokyo city) = 40
c(Tokyo is) = 35

c(Tokyo was) = 24
c(Tokyo tower) = 15
c(Tokyo port) = 10

…

Most 2-grams already exist
→ Large λ is better!

Low frequency word: “Tottori”

c(Tottori is) = 2
c(Tottori city) = 1
c(Tottori was) = 0

Many 2-grams will be missing
→ Small λ is better!

P(wi∣w i−1)=λw i−1
PML (w i∣wi−1)+ (1−λw i−1

)P(wi)

 11

NLP Programming Tutorial 2 – Bigram Language Model

Witten-Bell Smoothing

● One of the many ways to choose

● For example:

λw i−1

λw i−1
=1−

u(wi−1)

u(wi−1)+ c (wi−1)

u(wi−1) = number of unique words after w
i-1

c(Tottori is) = 2 c(Tottori city) = 1
c(Tottori) = 3 u(Tottori) = 2

λTottori=1−
2

2+ 3
=0.6

c(Tokyo city) = 40 c(Tokyo is) = 35 ...
c(Tokyo) = 270 u(Tokyo) = 30

λTokyo=1−
30

30+ 270
=0.9

 12

NLP Programming Tutorial 2 – Bigram Language Model

Programming Techniques

 13

NLP Programming Tutorial 2 – Bigram Language Model

Inserting into Arrays

● To calculate n-grams easily, you may want to:

● This can be done with:

my_words = [“this”, “is”, “a”, “pen”]

my_words = [“<s>”, “this”, “is”, “a”, “pen”, “</s>”]

my_words.append(“</s>”) # Add to the end

my_words.insert(0, “<s>”) # Add to the beginning

 14

NLP Programming Tutorial 2 – Bigram Language Model

Removing from Arrays

● Given an n-gram with w
i-n+1

 … w
i
, we may want the

context w
i-n+1

 … w
i-1

● This can be done with:

my_ngram = “tokyo tower”
my_words = my_ngram.split(“ “) # Change into [“tokyo”, “tower”]
my_words.pop() # Remove the last element (“tower”)
my_context = “ “.join(my_words) # Join the array back together
print my_context

 15

NLP Programming Tutorial 2 – Bigram Language Model

Exercise

 16

NLP Programming Tutorial 2 – Bigram Language Model

Exercise

● Write two programs
● train-bigram: Creates a bigram model
● test-bigram: Reads a bigram model and calculates

entropy on the test set
● Test train-bigram on test/02-train-input.txt

● Train the model on data/wiki-en-train.word

● Calculate entropy on data/wiki-en-test.word (if linear
interpolation, test different values of λ

2
)

● Challenge:
● Use Witten-Bell smoothing (Linear interpolation is easier)
● Create a program that works with any n (not just bi-gram)

 17

NLP Programming Tutorial 2 – Bigram Language Model

train-bigram (Linear Interpolation)
create map counts, context_counts

for each line in the training_file
 split line into an array of words
 append “</s>” to the end and “<s>” to the beginning of words
 for each i in 1 to length(words)-1 # Note: starting at 1, after <s>
 counts[“w

i-1
 w

i
”] += 1 # Add bigram and bigram context

 context_counts[“w
i-1

”] += 1

 counts[“w
i
”] += 1 # Add unigram and unigram context

 context_counts[“”] += 1

open the model_file for writing
for each ngram, count in counts
 split ngram into an array of words # “w

i-1
 w

i
” → {“w

i-1
”, “w

i
”}

 remove the last element of words # {“w
i-1

”, “w
i
”} → {“w

i-1
”}

 join words into context # {“w
i-1

”} → “w
i-1

”

 probability = counts[ngram]/context_counts[context]
 print ngram, probability to model_file

 18

NLP Programming Tutorial 2 – Bigram Language Model

test-bigram (Linear Interpolation)
λ

1
 = ???, λ

2
 = ???,

V = 1000000, W = 0, H = 0

load model into probs

for each line in test_file
 split line into an array of words
 append “</s>” to the end and “<s>” to the beginning of words
 for each i in 1 to length(words)-1 # Note: starting at 1, after <s>
 P1 = λ

1
probs[“w

i
”] + (1 – λ

1
) / V # Smoothed unigram probability

 P2 = λ
2
probs[“w

i-1
 w

i
”] + (1 – λ

2
) * P1 # Smoothed bigram probability

 H += -log
2
(P2)

 W += 1

print “entropy = ”+H/W

 19

NLP Programming Tutorial 2 – Bigram Language Model

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

