
 1

NLP Programming Tutorial 6 – Advanced Discriminative Learning

NLP Programming Tutorial 6 -
Advanced Discriminative Learning

Graham Neubig
Nara Institute of Science and Technology (NAIST)

 2

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Review: Classifiers and the Perceptron

 3

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Prediction Problems

Given x, predict y

 4

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Example we will use:

● Given an introductory sentence from Wikipedia

● Predict whether the article is about a person

● This is binary classification

Give
nGonso was a Sanron sect priest (754-827)

in the late Nara and early Heian periods.

Predict

Yes!

Shichikuzan Chigogataki Fudomyoo is
a historical site located at Magura, Maizuru
City, Kyoto Prefecture.

No!

 5

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Mathematical Formulation

y = sign (w⋅ϕ(x))

= sign (∑i=1

I
w i⋅ϕi(x))

● x: the input

● φ(x): vector of feature functions {φ
1
(x), φ

2
(x), …, φ

I
(x)}

● w: the weight vector {w
1
, w

2
, …, w

I
}

● y: the prediction, +1 if “yes”, -1 if “no”
● (sign(v) is +1 if v >= 0, -1 otherwise)

 6

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Online Learning
create map w
for I iterations

for each labeled pair x, y in the data
phi = create_features(x)
y' = predict_one(w, phi)
if y' != y

update_weights(w, phi, y)

● In other words
● Try to classify each training example
● Every time we make a mistake, update the weights

● Many different online learning algorithms
● The most simple is the perceptron

 7

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Perceptron Weight Update

● In other words:
● If y=1, increase the weights for features in φ(x)

– Features for positive examples get a higher weight
● If y=-1, decrease the weights for features in φ(x)

– Features for negative examples get a lower weight

→ Every time we update, our predictions get better!

w←w+ y ϕ(x)

update_weights(w, phi, y)
for name, value in phi:

w[name] += value * y

 8

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Stochastic Gradient Descent and
Logistic Regression

 9

NLP Programming Tutorial 6 – Advanced Discriminative Learning

-10 -5 0 5 10
0

0.5

1

w*phi(x)

p(
y|

x)

Perceptron and Probabilities

● Sometimes we want the probability
● Estimating confidence in predictions
● Combining with other systems

● However, perceptron only gives us a prediction

P(y∣x)

In other words:

P(y=1∣x)=1 if w⋅ϕ (x)≥0

y=sign(w⋅ϕ(x))

P(y=1∣x)=0 if w⋅ϕ (x)<0

 10

NLP Programming Tutorial 6 – Advanced Discriminative Learning

-10 -5 0 5 10
0

0.5

1

w*phi(x)
p(

y|
x)

The Logistic Function
● The logistic function is a “softened” version of the

function used in the perceptron

-10 -5 0 5 10
0

0.5

1

w*phi(x)

p(
y|

x)

Perceptron Logistic Function

P(y=1∣x)= e w⋅ϕ (x)

1+ew⋅ϕ(x)

● Can account for uncertainty

● Differentiable

 11

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Logistic Regression

● Train based on conditional likelihood

● Find the parameters w that maximize the conditional
likelihood of all answers y

i
 given the example x

i

● How do we solve this?

ŵ=argmax
w

∏i
P(y i∣x i ;w)

 12

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Stochastic Gradient Descent
● Online training algorithm for probabilistic models

(including logistic regression)

create map w
for I iterations

for each labeled pair x, y in the data
w += α * dP(y|x)/dw

● In other words
● For every training example, calculate the gradient

(the direction that will increase the probability of y)
● Move in that direction, multiplied by learning rate α

 13

NLP Programming Tutorial 6 – Advanced Discriminative Learning

-10 -5 0 5 10
0

0.1

0.2

0.3

0.4

w*phi(x)

dp
(y

|x
)/

dw
*p

hi
(x

)

Gradient of the Logistic Function

● Take the derivative of the probability

d
d w

P (y=1∣x) =
d
d w

ew⋅ϕ (x)

1+ew⋅ϕ(x)

= ϕ (x) ew⋅ϕ (x)

(1+ew⋅ϕ(x))2

d
d w

P (y=−1∣x) =
d
d w

(1−
ew⋅ϕ(x)

1+ew⋅ϕ(x))

= −ϕ(x) ew⋅ϕ(x)

(1+ew⋅ϕ(x))2

 14

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Example: Initial Update
● Set α=1, initialize w=0

x = A site , located in Maizuru , Kyoto y = -1

w⋅ϕ(x)=0

w←w+−0.25ϕ (x)

w
unigram “A”

= -0.25
w

unigram “site”
= -0.25w

unigram “,”
 = -0.5

w
unigram “located”

= -0.25w
unigram “in”

 = -0.25

w
unigram “Maizuru”

 = -0.25

w
unigram “Kyoto”

 = -0.25

d
d w

P (y=−1∣x) = − e0

(1+e0)2 ϕ (x)

= −0.25ϕ (x)

 15

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Example: Second Update
x = Shoken , monk born in Kyoto y = 1

w⋅ϕ (x)=−1

w←w+0.196 ϕ(x)

w
unigram “A”

= -0.25
w

unigram “site”
= -0.25w

unigram “,”
 = -0.304

w
unigram “located”

= -0.25w
unigram “in”

 = -0.054

w
unigram “Maizuru”

 = -0.25

w
unigram “Kyoto”

 = -0.054

-0.5 -0.25 -0.25

w
unigram “Shoken”

= 0.196
w

unigram “monk”
= 0.196

w
unigram “born”

= 0.196

d
d w

P (y=1∣x) =
e1

(1+e1)2 ϕ (x)

= 0.196ϕ (x)

 16

NLP Programming Tutorial 6 – Advanced Discriminative Learning

SGD Learning Rate?

● How to set the learning rate α?

● Usually decay over time:

● Or, use held-out data, and reduce the learning rate
when the likelihood rises

α=
1
C+ t

parameter number of samples

 17

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Classification Margins

 18

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Choosing between
Equally Accurate Classifiers

● Which classifier is better? Dotted or Dashed?

O

X O

X O

X

 19

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Choosing between
Equally Accurate Classifiers

● Which classifier is better? Dotted or Dashed?

● Answer: Probably the dashed line.

● Why?: It has a larger margin.

O

X O

X O

X

 20

NLP Programming Tutorial 6 – Advanced Discriminative Learning

What is a Margin?

● The distance between the classification plane and the
nearest example:

O

X O

X O

X

 21

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Support Vector Machines

● Most famous margin-based classifier
● Hard Margin: Explicitly maximize the margin
● Soft Margin: Allow for some mistakes

● Usually use batch learning
● Batch learning: slightly higher accuracy, more stable
● Online learning: simpler, less memory, faster

convergence
● Learn more about SVMs:

http://disi.unitn.it/moschitti/material/Interspeech2010-Tutorial.Moschitti.pdf

● Batch learning libraries:
LIBSVM, LIBLINEAR, SVMLite

 22

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Online Learning with a Margin

● Penalize not only mistakes, but also correct answers
under a margin

create map w
for I iterations

for each labeled pair x, y in the data
phi = create_features(x)
val = w * phi * y
if val <= margin

update_weights(w, phi, y)

(A correct classifier will always make w * phi * y > 0)
If margin = 0, this is the perceptron algorithm

★

 23

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Regularization

 24

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Cannot Distinguish Between
Large and Small Classifiers

● For these examples:

● Which classifier is better?

-1 he saw a bird in the park
+1 he saw a robbery in the park

Classifier 1
he +3
saw -5
a +0.5
bird -1
robbery +1
in +5
the -3
park -2

Classifier 2
bird -1
robbery +1

 25

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Cannot Distinguish Between
Large and Small Classifiers

● For these examples:

● Which classifier is better?

-1 he saw a bird in the park
+1 he saw a robbery in the park

Classifier 1
he +3
saw -5
a +0.5
bird -1
robbery +1
in +5
the -3
park -2

Classifier 2
bird -1
robbery +1

Probably classifier 2!
It doesn't use

irrelevant information.

 26

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Regularization

● A penalty on adding extra weights

● L2 regularization:
● Big penalty on large weights,

small penalty on small weights
● High accuracy

● L1 regularization:
● Uniform increase whether large

or small
● Will cause many weights to

become zero → small model

-2 -1 0 1 2
0

1

2

3

4

5

L2
L1

 27

NLP Programming Tutorial 6 – Advanced Discriminative Learning

L1 Regularization in Online Learning

● After update, reduce the weight by a constant c

update_weights(w, phi, y, c)
for name, value in w:

if abs(value) < c:
w[name] = 0

else:
w[name] -= sign(value) * c

for name, value in phi:
w[name] += value * y

★
★
★
★
★

If abs. value < c,
set weight to zero

If value > 0,
 decrease by c
If value < 0,
 increase by c

 28

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Example
● Every turn, we Regularize, Update, Regularize, Update

Regularization: c=0.1
Updates: {1, 0} on 1st and 5th turns

{0, -1} on 3rd turn

R
1

U
1

{0, 0}Change:

w: {0, 0}

{1, 0}

{1, 0}

R
2

U
2

R
3

U
3

{-0.1, 0} {0, 0}

{0.9, 0} {0.9, 0} {0.8, 0}

{0, -1}

{0.8, -1}

R
4

U
4

{-0.1, 0.1}Change:

w: {0.7, -0.9}

{0, 0}

R
5

U
5

R
6

U
6

{0, 0}

{0.7, -0.9} {0.6, -0.8} {1.6, -0.8} {1.5, -0.7}{1.5, -0.7}

{-0.1, 0}

{1, 0}{-0.1, 0.1} {-0.1, 0.1}

 29

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Efficiency Problems
● Typical number of features:

● Each sentence (phi): 10~1000
● Overall (w): 1,000,000~100,000,000

This loop is
VERY SLOW!

update_weights(w, phi, y, c)
for name, value in w:

if abs(value) <= c:
w[name] = 0

else:
w[name] -= sign(value) * c

for name, value in phi:
w[name] += value * y

 30

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Efficiency Trick

● Regularize only when the value is used!

● This is called “lazy evaluation”, used in many
applications

getw(w, name, c, iter, last)
if iter != last[name]: # regularize several times

c_size = c * (iter - last[name])
if abs(w[name]) <= c_size:

w[name] = 0
else:

w[name] -= sign(w[name]) * c_size
last[name] = iter

return w[name]

 31

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Choosing the Regularization Constant

● The regularization constant c has a large effect

● Large value
● small model
● lower score on training set
● less overfitting

● Small value
● large model
● higher score on training set
● more overfitting

● Choose best regularization value on development set
● e.g. 0.0001, 0.001, 0.01, 0.1, 1.0

 32

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Exercise

 33

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Exercise

● Write program:
● train-svm/train-lr: Create an svm or LR model with L2

regularization constant 0.001
● Train a model on data-en/titles-en-train.labeled

● Predict the labels of data-en/titles-en-test.word

● Grade your answers and compare them with the
perceptron

● script/grade-prediction.py data-en/titles-en-test.labeled your_answer

● Extra challenge:
● Try many different regularization constants
● Implement the efficiency trick

 34

NLP Programming Tutorial 6 – Advanced Discriminative Learning

Thank You!

