NLP Programming Tutorial 9 -Advanced Discriminative Learning

Graham Neubig Nara Institute of Science and Technology (NAIST)

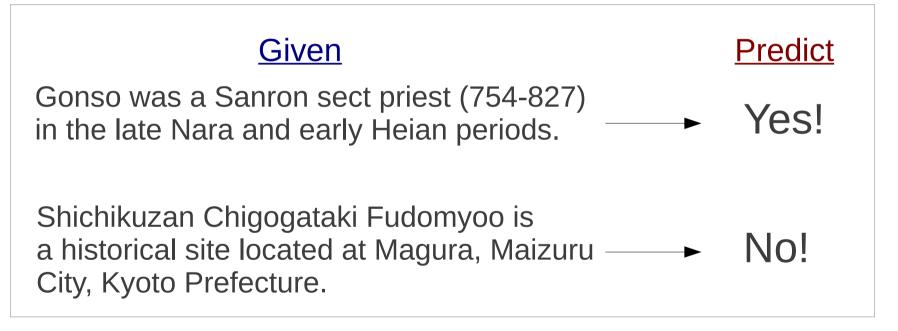
Review: Classifiers and the Perceptron

Prediction Problems

Given x, predict y

Example we will use:

- Given an introductory sentence from Wikipedia
- Predict whether the article is about a person



• This is binary classification

Mathematical Formulation

$$y = \operatorname{sign}(w \cdot \phi(x))$$

= sign $\left(\sum_{i=1}^{I} w_i \cdot \phi_i(x)\right)$

- x: the input
- $\phi(x)$: vector of feature functions { $\phi_1(x), \phi_2(x), \dots, \phi_n(x)$ }
- **w**: the weight vector $\{w_1, w_2, ..., w_l\}$
- y: the prediction, +1 if "yes", -1 if "no"
 - (sign(v) is +1 if v >= 0, -1 otherwise)

Online Learning

```
create map w
for / iterations
  for each labeled pair x, y in the data
    phi = CREATE_FEATURES(X)
    y' = PREDICT_ONE(W, phi)
    if y' != y
        UPDATE_WEIGHTS(W, phi, y)
```

- In other words
 - Try to classify each training example
 - Every time we make a mistake, update the weights
- Many different online learning algorithms
 - The most simple is the perceptron

Perceptron Weight Update $w \leftarrow w + y \phi(x)$

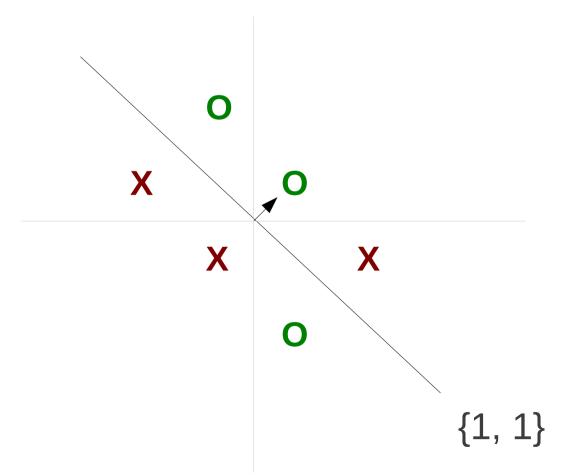
- In other words:
 - If y=1, increase the weights for features in $\varphi(x)$
 - Features for positive examples get a higher weight
 - If y=-1, decrease the weights for features in $\phi(x)$
 - Features for negative examples get a lower weight

→ Every time we update, our predictions get better!

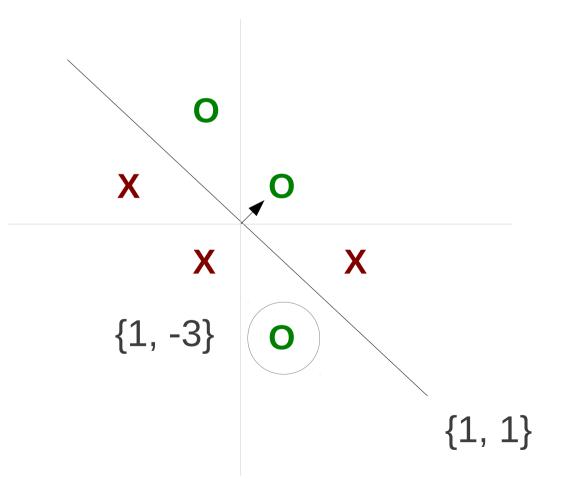
UPDATE_WEIGHTS(W, phi, y) for name, value in phi: w[name] += value * y

Averaged Perceptron

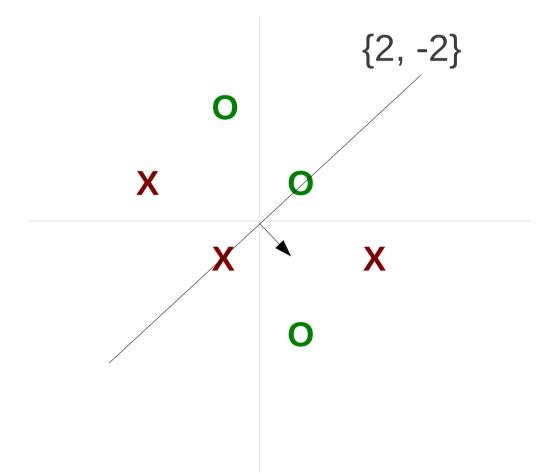
- Perceptron is instable with non-separable data
- Example:



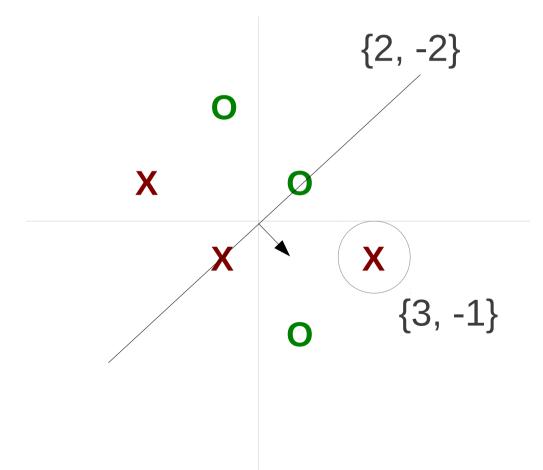
- Perceptron is instable with non-separable data
- Example:



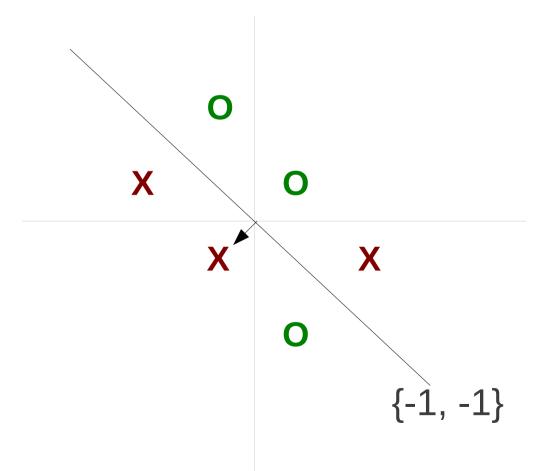
- Perceptron is instable with non-separable data
- Example:



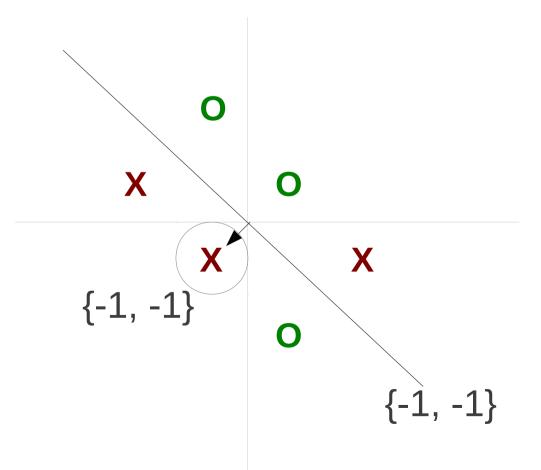
- Perceptron is instable with non-separable data
- Example:



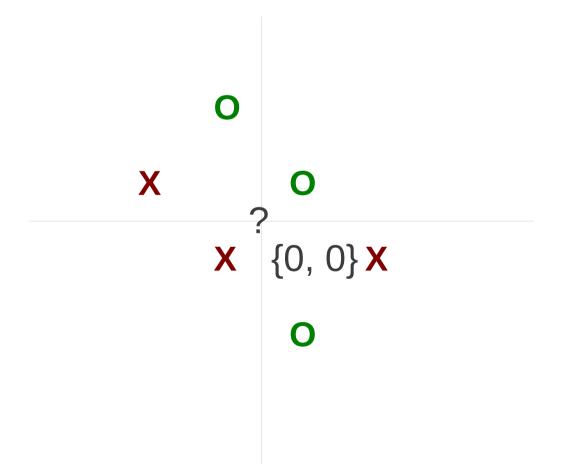
- Perceptron is instable with non-separable data
- Example:



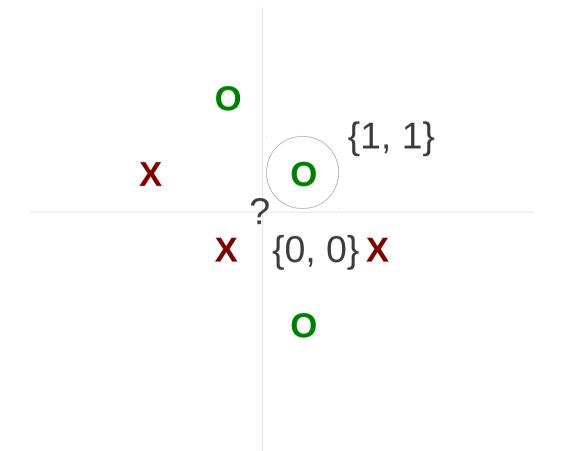
- Perceptron is instable with non-separable data
- Example:



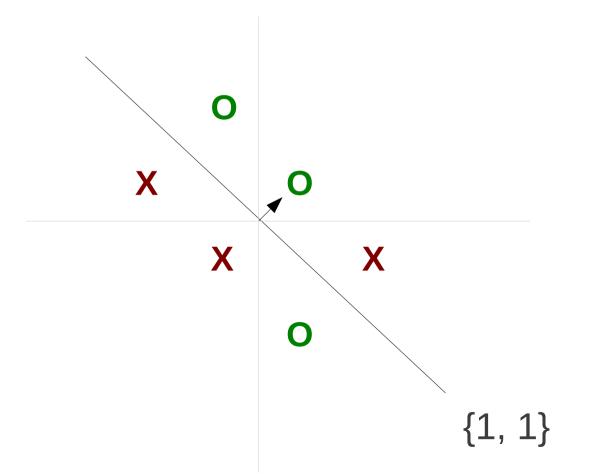
- Perceptron is instable with non-separable data
- Example:



- Perceptron is instable with non-separable data
- Example:



- Perceptron is instable with non-separable data
- Example:

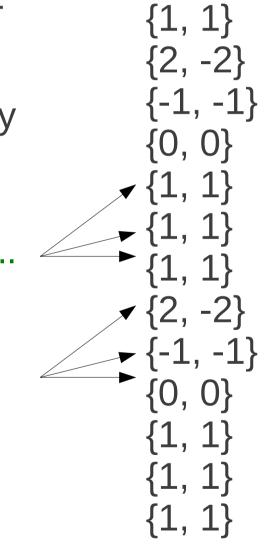


Result of Perceptron Training

- Long list of weights that never converges
- Accuracy greatly influenced by stopping point

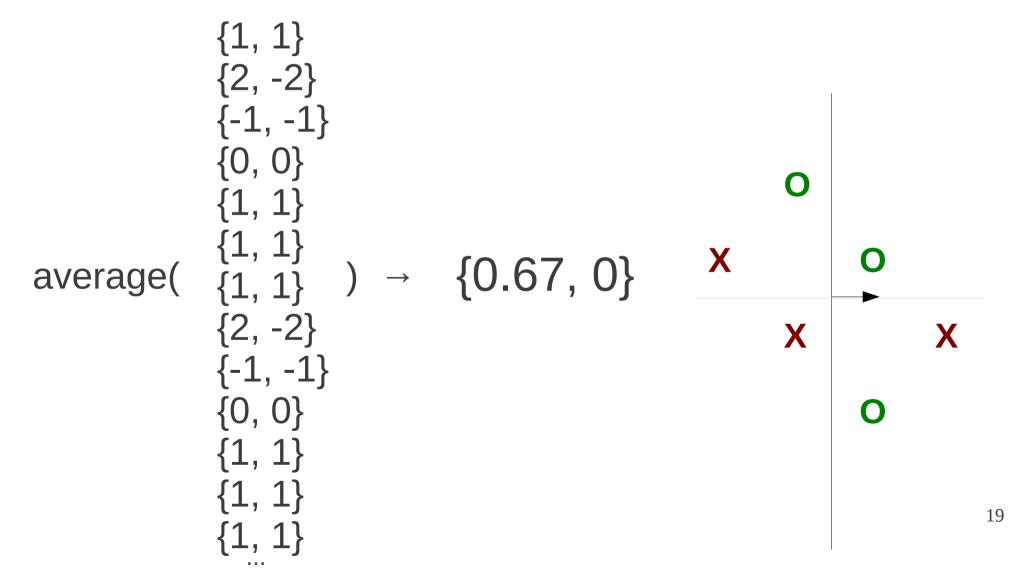
Not so bad...

Really bad!

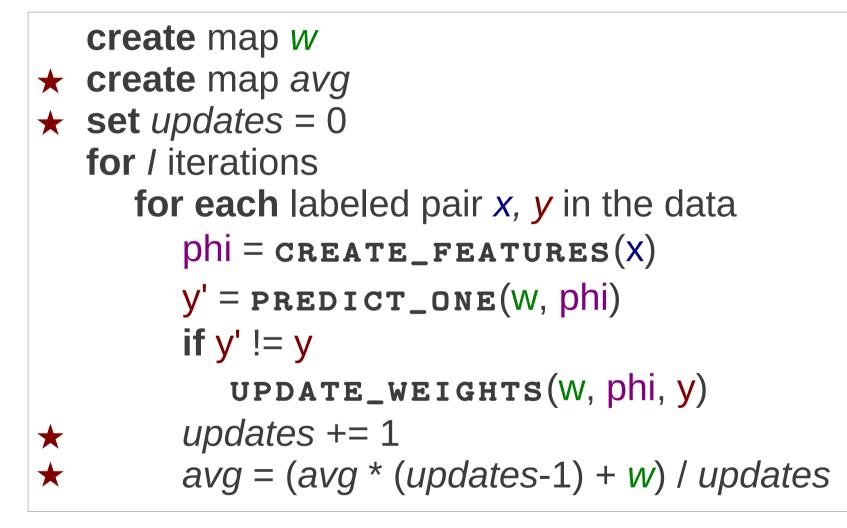


Averaged Perceptron Idea

• Just take the average of the weights!



Averaged Perceptron in Code

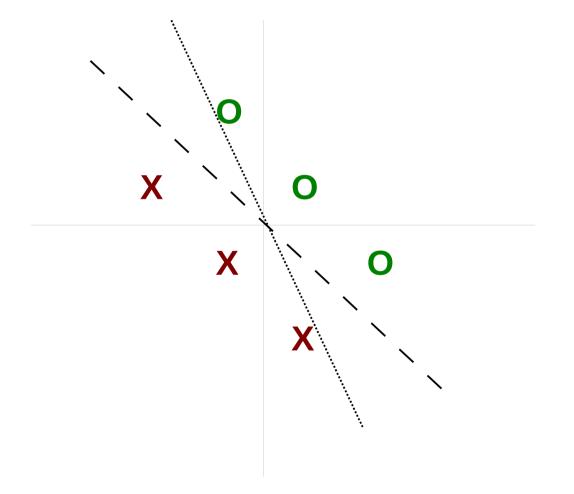


• Change the average after every update

Classification Margins

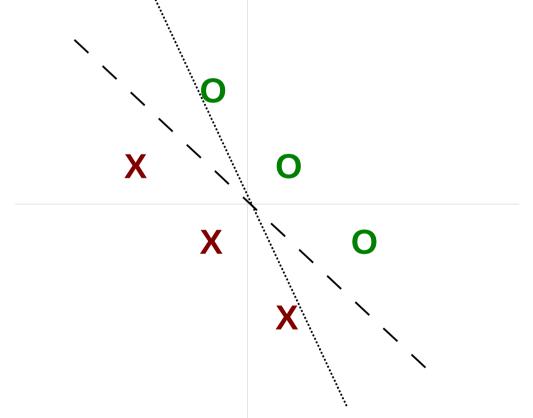
Choosing between Equally Accurate Classifiers

• Which classifier is better? Dotted or Dashed?



Choosing between Equally Accurate Classifiers

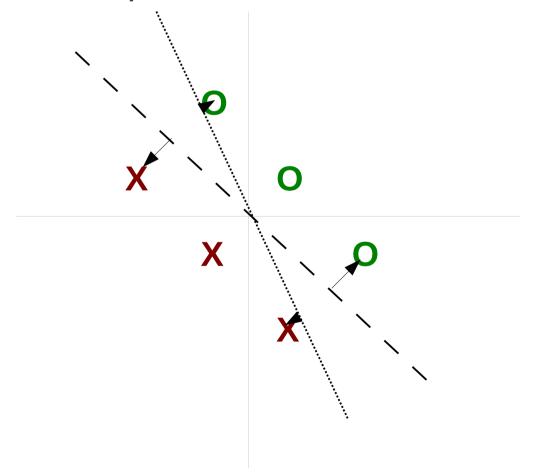
• Which classifier is better? Dotted or Dashed?



- Answer: Probably the dashed line.
- Why?: It has a larger margin.

What is a Margin?

• The distance between the classification plane and the nearest example:



Support Vector Machines

- Most famous margin-based classifier
 - Hard Margin: Explicitly maximize the margin
 - Soft Margin: Allow for some mistakes
- Usually use batch learning
 - Batch learning: slightly higher accuracy, more stable
 - Online learning: simpler, less memory, faster convergence
- Learn more about SVMs: http://disi.unitn.it/moschitti/material/Interspeech2010-Tutorial.Moschitti.pdf
- Batch learning libraries: LIBSVM, LIBLINEAR, SVMLite

Online Learning with a Margin

• Penalize not only mistakes, but also correct answers under a margin

```
create map w
for / iterations
for each labeled pair x, y in the data
    phi = create_features(x)
    val = w * phi * y
    if val <= margin
    UPDATE_WEIGHTS(W, phi, y)</pre>
```

(A correct classifier will always make w * phi * y > 0) If margin = 0, this is the perceptron algorithm

Regularization

Cannot Distinguish Between Large and Small Classifiers

• For these examples:

-1 he saw a bird in the park+1 he saw a robbery in the park

• Which classifier is better?

<u>Classifier 1</u> he +3	<u>Classifier 2</u> bird -1
saw -5	robbery +1
a +0.5	· · · · · · · · · · · · · · · · · · ·
bird -1	
robbery +1	
in +5	
the -3	
park -2	

Cannot Distinguish Between Large and Small Classifiers

• For these examples:

-1 he saw a bird in the park+1 he saw a robbery in the park

• Which classifier is better?

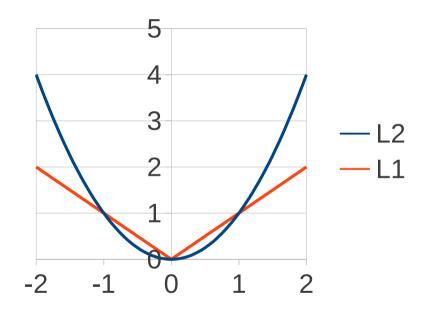
Classifier 1 he +3 saw -5 a +0.5 bird -1 robbery +1 in +5 the -3 park -2

<u>Classifier 2</u> bird -1 robbery +1

Probably classifier 2! It doesn't use irrelevant information.

Regularization

- A penalty on adding extra weights
- L2 regularization:
 - Big penalty on large weights, small penalty on small weights
 - High accuracy
- L1 regularization:
 - Uniform increase whether large or small
 - Will cause many weights to become zero → <u>small model</u>



L1 Regularization in Online Learning

• After update, reduce the weight by a constant c

```
UPDATE_WEIGHTS(W, phi, y, c)
     for name, value in w:
\star
                                               If abs. value < c,
        if ABS(value) < C:
\star
                                               set weight to zero
           w[name] = 0
\star
        else:
\star
                                               If value > 0,
           w[name] -= sign(value) * C-
                                                decrease by c
\star
                                               If value < 0,
     for name, value in phi:
                                                increase by c
        w[name] += value * y
```

Example

• Every turn, we <u>Regularize</u>, <u>Update</u>, <u>Regularize</u>, <u>Update</u>

Regula Update	rization: s:	<mark>c</mark> =0.1 {1, 0} on 1 st and 5 th turns {0, -1} on 3 rd turn					
	$R_{_1}$	$U_{_1}$	R_{2}	U_2	$R_{_3}$	U ₃	
Change:	{0, 0}	{ <u>1</u> , 0}	{ <u>-0.1</u> , 0}	{0, 0}	{ <u>-0.1</u> , 0}	{0, <u>-1</u> }	
W:	{0, 0}	{1, 0}	{0.9, 0}	{0.9, 0}	{0.8, 0}	{0.8, -1}	
	$R_{_4}$	U_4	$R_{_{5}}$	U ₅	$R_{_6}$	U ₆	
Change:{	[<u>-0.1</u> , <u>0.1</u>	} {0, 0}	{ <u>-0.1</u> , <u>0.1</u> }	{ <u>1</u> , 0}	{ <u>-0.1</u> , <u>0.1</u> }	{0, 0}	
W: {	[0.7, -0.9]	{0.7, -0.9	} {0.6, -0.8}	{1.6, -0.8]	} {1.5, -0.7}	{1.5, -0.7}	

Efficiency Problems

- Typical number of features:
 - Each sentence (phi): 10~1000
 - Overall (w): 1,000,000~100,000,000

```
UPDATE_WEIGHTS(W, phi, y, c)
for name, value in w:
    if ABS(value) <= c:
        w[name] = 0
    else:
        w[name] -= sign(value) * c
    for name, value in phi:
        w[name] += value * y</pre>
```


Efficiency Trick

• Regularize only when the value is used!

• This is called "lazy evaluation", used in many applications

Choosing the Regularization Constant

- The regularization constant **c** has a large effect
- Large value
 - small model
 - lower score on training set
 - less overfitting
- Small value
 - large model
 - higher score on training set
 - more overfitting
- Choose best regularization value on development set
 - e.g. 0.0001, 0.001, 0.01, 0.1, 1.0

Exercise

Exercise

- Write program:
 - train-svm: Creates an svm model with L1 regularization constant 0.001 and margin 1
- Train a model on data-en/titles-en-train.labeled
- Predict the labels of data-en/titles-en-test.word
- Grade your answers and compare them with the perceptron
 - script/grade-prediction.py data-en/titles-en-test.labeled your_answer
- Extra challenge:
 - Try many different regularization constants
 - Implement the efficiency trick

Thank You!