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Topics in Documents
● In general, documents can be grouped into topics

Cuomo to Push for Broader
Ban on Assault Weapons

…
…
…
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2012 Was Hottest
Year in U.S. History

…
…
…
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Topic Modeling
● Topic modeling finds topics Y given documents X

 

● A type of “structured” prediction
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Probabilistic Generative Model

● We assume some probabilistic model generated the 
topics Y and documents X jointly

● The topics Y with highest joint probability given X also 
has the highest conditional probability 

P(Y , X )

argmax
Y

P (Y∣X )=argmax
Y

P(Y , X)
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Generative Topic Model

● Assume we have words X and topics Y:

● First decide topics (independently)

● Then decide words given topics (independently)

X = Cuomo to Push for Broader Ban on Assault Weapons

Y =   NY  Func Pol Func Pol      Pol Func Crime    Crime
NY=New York,  Func=Function Word, Pol=Politics, Crime=Crime

P(Y )=∏i=1

I
P ( y i)

P(X∣Y )=∏i=1

I
P(x i∣y i)



  7

NLP Programming Tutorial 7 – Topic Models

Unsupervised Topic Modeling
● Given only the documents X, find topic-like clusters Y

 

● A type of “structured” prediction

● But unlike before, we have no labeled training data!
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Latent Dirichlet Allocation

● Most popular generative model for topic modeling

● First generate model parameters θ:

● For every document in X:

● Generate document topic distribution T
i
:

● For each word x
i,j
 in X

i
:

– Generate word topic y
i,j
:

– Generate the word x
i,j
:

P(θ)

P(T i∣θ)

P( y i , j∣T i)

P(x i , j∣y i , j ,θ)

P(X ,Y )=∫θ
P (θ)∏i

P(T i∣θ)∏ j
P ( y i , j∣T i ,θ)P(x i , j∣y i , j ,θ)



  9

NLP Programming Tutorial 7 – Topic Models

Maximum Likelihood Estimation

● Assume we have words X and topics Y:

● Can decide the topic distribution for each document:

● Can decide word distribution for each topic:

X
1
 = Cuomo to Push for Broader Ban on Assault Weapons

Y
1
 =   32      7    24    7      24       24   7       10          10

P( y∣Y i)=c ( y ,Y i)/∣Y i∣ P( y=24∣Y 1)=3 /9e.g.:

P(x∣y )=c (x , y )/c ( y) P(x=assault∣y=10)=1/2
e.g.:
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Problem: Unobserved Variables

● Problem: We do not know the values of y
i,j

● Solution: Use a method for unsupervised learning
● EM Algorithm
● Variational Bayes
● Sampling
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Sampling Basics
● Generate a sample from probability distribution:

● Count the samples and calculate probabilities

 

● More samples = better approximation

Distribution: P(Noun)=0.5   P(Verb)=0.3   P(Preposition)=0.2

P(Noun)= 4/10 = 0.4, P(Verb)= 4/10 = 0.4, P(Preposition) = 2/10 = 0.2

Sample: Verb Verb Prep. Noun Noun Prep. Noun Verb Verb Noun … 

1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06
0

0.2

0.4

0.6

0.8

1

Noun
Verb
Prep.

Samples

P
ro

b
a

b
il i

ty
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Actual Algorithm

SampleOne(probs[])

     z = Sum(probs)

     remaining = Rand(z)

     for each i in 0 .. probs.size-1

          remaining -= probs[i]

          if remaining <= 0

               return i

Generate number from
uniform distribution over [0,z)

Iterate over all probabilities

Subtract current prob. value

If smaller than zero, return
current index as answer

Calculate sum of probs

Bug check, beware of overflow!
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Gibbs Sampling

● Want to sample a 2-variable distribution P(A,B)
● … but cannot sample directly from P(A,B)
● … but can sample from P(A|B) and P(B|A)

● Gibbs sampling samples variables one-by-one to 
recover true distribution

● Each iteration:
Leave A fixed, sample B from P(B|A)
Leave B fixed, sample A from P(A|B)
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Example of Gibbs Sampling

● Parent A and child B are shopping, what sex?
P(Mother|Daughter) = 5/6 = 0.833   
P(Mother|Son) = 5/8 = 0.625
P(Daughter|Mother) = 2/3 = 0.667 
P(Daughter|Father) = 2/5 = 0.4

● Original state: Mother/Daughter
Sample P(Mother|Daughter)=0.833, chose Mother
Sample P(Daughter|Mother)=0.667, chose Son

　 c(Mother, Son)++
Sample P(Mother|Son)=0.625, chose Mother
Sample P(Daughter|Mother)=0.667, chose Daughter

　 c(Mother, Daughter)++
                                       …
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Try it Out:

● In this case, we can confirm this result by hand

1E+00 1E+02 1E+04 1E+06
0

0.2

0.4

0.6

0.8

1

Moth/Daugh
Moth/Son
Fath/Daugh
Fath/Son

Number of Samples

P
ro

ba
bi

lit
y
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Sampling in Topic Models (1)
● Sample one y

i,j
 at a time:

● Subtract of y
i,j
 and re-calculate topics and parameters

X
1
 = Cuomo to Push for Broader Ban on Assault Weapons

 
Y

1
 =      5        7    4    7        3        4     7       6            6

{0, 0, 1/9, 2/9, 1/9, 2/9, 3/9, 0}

{0, 0, 1/8, 2/8, 1/8, 2/8, 2/8, 0}
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Sampling in Topic Models (2)
● Sample one y

i,j
 at a time:

● Multiply topic prob., by word given topic prob.: 

X
1
 = Cuomo to Push for Broader Ban on Assault Weapons

 
Y

1
 =      5        7    4  ???        3        4     7       6            6

P(y
i,j
 | T

i
) = {    0,      0, 0.125, 0.25, 0.125, 0.25, 0.25, 0}

P(x
i,j
 | y

i,j
, θ) ={0.01, 0.02,   0.01, 0.10,   0.08, 0.07, 0.70, 0.01}

P(x
i,j
 y

i,j
| T

i
, θ)={     0,   0,0.00125,0.01,0.01,0.00875,0.175, 0}/Z

*
=

Normalization constant

Calculated from whole corpus
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Sampling in Topic Models (3)
● Sample one value from this distribution:

● Add the word with the new topic:

● Update the counts and the probabilities:

X
1
 = Cuomo to Push for Broader Ban on Assault Weapons

Y
1
 =      5        7    4     6        3        4     7       6            6

P(x
i,j
, y

i,j
 | T

i
, θ)={     0,   0,0.00125,0.01,0.01,0.00875,0.175, 0}/Z

{0, 0, 1/9, 2/9, 1/9, 3/9, 2/9, 0}

{0, 0, 1/8, 2/8, 1/8, 2/8, 2/8, 0}
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Dirichlet Smoothing
● Problem: Many probabilities are zero!

 → Cannot escape from local minima

● Solution: Smooth the probabilities

● N
x
 and N

y
 are number of unique words and topics

● Equal to using a Dirichlet prior over the probabilities
(More details in my Bayes tutorial)

P(x i , j∣x i , j)=
c (x i , j , y i , j)

c ( y i , j)
P(x i , j∣y i , j)=

c (x i , j , y i , j)+ α

c ( y i , j)+ α∗N x

P( y i , j∣Y i)=
c( y i , j ,Y i)

c (Y i)
P( y i , j∣Y i)=

c( y i , j∣Y i)+ β

c(Y i)+ β∗N y

Unsmoothed Smoothed

http://www.phontron.com/teaching.php
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Implementation: Initialization
make vectors xcorpus, ycorpus  # to store each value of x, y 
make map xcounts, ycounts  # to store counts for probs
for line in file

docid = size of xcorpus # get a numerical ID for this doc
split line into words
make vector topics # create random topic ids
for word in words

topic = Rand(NUM_TOPICS) # random in [0,NUM_TOP)
append topic to topics
AddCounts(word, topic, docid, 1) # add counts

append words (vector) to xcorpus
append topics (vector) to ycorpus
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Implementation: Adding Counts

AddCounts(word, topic, docid, amount)

xcounts[topic] += amount
xcounts[word,topic] += amount

ycounts[docid] += amount
ycounts[topic,docid] += amount

bug check!
if any of these values < 0, throw error

P(x i , j∣y i , j)=
c (x i , j , y i , j)+ α

c ( y i , j)+ α∗N x

P( y i , j∣Y i)=
c ( y i , j , Y i)+ β

c(Y i)+ β∗N y

for

for
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Implementation: Sampling
for many iterations:
  ll = 0
  for i in 0:Size(xcorpus):

for j in 0:Size(xcorpus[i]):
  x = xcorpus[i][j]
  y = ycorpus[i][j]
  AddCounts(x, y, i, -1) # subtract the counts (hence -1)
  make vector probs
  for k in 0 .. NUM_TOPICS-1:

append P(x|k) * P(k|Y) to probs # prob of topic k
  new_y = SampleOne(probs)

       ll += log(probs[new_y]) # Calculate the log likelihood
  AddCounts(x, new_y, i, 1) # add the counts
  ycorpus[i][j] = new_y

  print ll
print out wcounts and tcounts
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Exercise
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Exercise
● Write learn-lda

● Test the program, setting NUM_TOPICS to 2

● Input: test/07­train.txt
● Answer:

– No correct answer! (Because sampling is random)
– However, “a b c d” and “e f g h” should probably be different topics

● Train a topic model on data/wiki­en­documents.word 
with 20 topics

● Find some topics that match with your intuition

● Challenge: Change the model so you don't have to choose 
the number of topics in advance
(Read about non-parametric Bayesian techniques)
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Thank You!
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