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Prediction Problems

Given x,              predict y
A book review

Oh, man I love this book!
This book is so boring...

Is it positive?
yes
no

Binary
Prediction
(2 choices)

A tweet
On the way to the park!
公園に行くなう！

Its language
English

Japanese

Multi-class
Prediction
(several choices)

A sentence

I read a book

Its syntactic parse

Structured
Prediction
(millions of choices)

I   read   a   book
DET NN

NP

VBD

VP

S

N
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Prediction Problems

Given x,              predict y
A book review

Oh, man I love this book!
This book is so boring...

Is it positive?
yes
no

Binary
Prediction
(2 choices)

A tweet
On the way to the park!
公園に行くなう！

Its language
English

Japanese

Multi-class
Prediction
(several choices)

A sentence

I read a book

Its syntactic parse

Structured
Prediction
(millions of choices)

I   read   a   book
DET NN

NP

VBD

VP

S

N

Most NLP
Problems!
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So Far, We Have Learned

Classifiers

Perceptron, SVM, Neural Net

Lots of features

Binary prediction

Generative Models

HMM POS Tagging
CFG Parsing

Conditional probabilities

Structured prediction
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Structured Perceptron

Classifiers

Perceptron, SVM, Neural Net

Lots of features

Binary prediction

Generative Models

HMM POS Tagging
CFG Parsing

Conditional probabilities

Structured prediction

Structured perceptron →
Classification with lots of features

over structured models!
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Uses of Structured Perceptron
(or Variants)

● POS Tagging with HMMs
Collins “Discriminative Training Methods for Hidden Markov Models: 
Theory and Experiments with Perceptron Algorithms” ACL02

● Parsing
Huang+ “Forest Reranking: Discriminative Parsing with Non-Local 
Features” ACL08

● Machine Translation
Liang+ “An End-to-End Discriminative Approach to Machine 
Translation” ACL06
(Neubig+ “Inducing a Discriminative Parser for Machine Translation 
Reordering, EMNLP12”, Plug :) )

● Discriminative Language Models
Roark+ “Discriminative Language Modeling with Conditional Random 
Fields and the Perceptron Algorithm” ACL04
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Example:
Part of Speech (POS) Tagging

● Given a sentence X, predict its part of speech 
sequence Y

● A type of structured prediction

Natural language processing ( NLP ) is a field of computer science

JJ            NN            NN  -LRB- NN -RRB- VBZ DT NN IN  NN          NN
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Hidden Markov Models (HMMs) for 
POS Tagging

● POS→POS transition probabilities
● Like a bigram model!

● POS→Word emission probabilities

natural language processing (         nlp           )          ...

<s> JJ NN NN LRB NN RRB ... </s>

P
T
(JJ|<s>) P

T
(NN|JJ) P

T
(NN|NN) …

P
E
(natural|JJ) P

E
(language|NN) P

E
(processing|NN) …

P (Y )≈∏i=1

I+1
PT (y i∣y i−1 )

P (X∣Y )≈∏1

I
PE( x i∣y i )

* *

* *
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Why are Features Good?

● Can easily try many different ideas
● Are capital letters usually nouns?
● Are words that end with -ed usually verbs? -ing?
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Restructuring HMM With Features

P (X ,Y )=∏1

I
PE( x i∣y i )∏i=1

I+1
PT ( y i∣y i−1)Normal HMM:
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Restructuring HMM With Features

P (X ,Y )=∏1

I
PE( x i∣y i )∏i=1

I+1
PT ( y i∣y i−1)Normal HMM:

logP (X ,Y )=∑1

I
logPE( x i∣y i )∑i=1

I+1
logPT ( y i∣y i −1)Log Likelihood:
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Restructuring HMM With Features

P (X ,Y )=∏1

I
PE( x i∣y i )∏i=1

I+1
PT ( y i∣y i−1)Normal HMM:

logP (X ,Y )=∑1

I
logPE( x i∣y i )∑i=1

I+1
logPT ( y i∣y i −1)Log Likelihood:

S (X ,Y )=∑1

I
w E , y i , x i

∑i=1

I+1
wT ,y i−1 , y i

Score
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Restructuring HMM With Features

P (X ,Y )=∏1

I
PE( x i∣y i )∏i=1

I+1
PT ( y i∣y i−1)Normal HMM:

logP (X ,Y )=∑1

I
logPE( x i∣y i )∑i=1

I+1
logPT ( y i∣y i −1)Log Likelihood:

S (X ,Y )=∑1

I
w E , y i , x i

∑i=1

I+1
w E , y i−1 , y i

Score

w E , y i , x i
= logPE (x i∣y i)When: wT , y i−1 , y i

=logPT ( y i∣y i−1)

log P(X,Y) = S(X,Y)
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Example
I       visited      Nara

PRP      VBD       NNP
φ(                           ) =

I       visited      Nara

NNP      VBD      NNP
φ(                           ) =

φ
T,<S>,PRP

(X,Y
1
) = 1 φ

T,PRP,VBD
(X,Y

1
) = 1 φ

T,VBD,NNP
(X,Y

1
) = 1 φ

T,NNP,</S>
(X,Y

1
) = 1

φ
E,PRP,”I”

(X,Y
1
) = 1 φ

E,VBD,”visited”
(X,Y

1
) = 1 φ

E,NNP,”Nara”
(X,Y

1
) = 1

φ
T,<S>,NNP

(X,Y
1
) = 1 φ

T,NNP,VBD
(X,Y

1
) = 1 φ

T,VBD,NNP
(X,Y

1
) = 1 φ

T,NNP,</S>
(X,Y

1
) = 1

φ
E,NNP,”I”

(X,Y
1
) = 1 φ

E,VBD,”visited”
(X,Y

1
) = 1 φ

E,NNP,”Nara”
(X,Y

1
) = 1

φ
CAPS,PRP

(X,Y
1
) = 1 φ

CAPS,NNP
(X,Y

1
) = 1

φ
CAPS,NNP

(X,Y
1
) = 2

φ
SUF,VBD,”...ed”

(X,Y
1
) = 1

φ
SUF,VBD,”...ed”

(X,Y
1
) = 1
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Finding the Best Solution

● We must find the POS sequence that satisfies:

Ŷ=argmaxY∑i
w i ϕi (X ,Y )
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Remember: HMM Viterbi Algorithm

● Forward step, calculate the best path to a node
● Find the path to each node with the lowest negative log 

probability
● Backward step, reproduce the path

● This is easy, almost the same as word segmentation
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Forward Step: Part 1

● First, calculate transition from <S> and emission of the 
first word for every POS

1:NN

1:JJ

1:VB

1:PRP

1:NNP

…

0:<S>

I

best_score[“1 NN”] = -log P
T
(NN|<S>) + -log P

E
(I | NN)

best_score[“1 JJ”] = -log P
T
(JJ|<S>) + -log P

E
(I | JJ)

best_score[“1 VB”] = -log P
T
(VB|<S>) + -log P

E
(I | VB)

best_score[“1 PRP”] = -log P
T
(PRP|<S>) + -log P

E
(I | PRP)

best_score[“1 NNP”] = -log P
T
(NNP|<S>) + -log P

E
(I | NNP)
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Forward Step: Middle Parts

● For middle words, calculate the minimum score for all 
possible previous POS tags

1:NN

1:JJ

1:VB

1:PRP

1:NNP

…

I
best_score[“2 NN”] = min( 
 best_score[“1 NN”] + -log P

T
(NN|NN) + -log P

E
(visited | NN),

 best_score[“1 JJ”] + -log P
T
(NN|JJ) + -log P

E
(language | NN),

 best_score[“1 VB”] + -log P
T
(NN|VB) + -log P

E
(language | NN),

 best_score[“1 PRP”] + -log P
T
(NN|PRP) + -log P

E
(language | NN),

 best_score[“1 NNP”] + -log P
T
(NN|NNP) + -log P

E
(language | NN),

 ...
)

2:NN

2:JJ

2:VB

2:PRP

2:NNP

…

visited

best_score[“2 JJ”] = min( 
 best_score[“1 NN”] + -log P

T
(JJ|NN) + -log P

E
(language | JJ),

 best_score[“1 JJ”] + -log P
T
(JJ|JJ) + -log P

E
(language | JJ),

 best_score[“1 VB”] + -log P
T
(JJ|VB) + -log P

E
(language | JJ),

                                         ...
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HMM Viterbi with Features

● Same as probabilities, use feature weights

1:NN

1:JJ

1:VB

1:PRP

1:NNP

…

0:<S>

I

best_score[“1 NN”] = w
T,<S>,NN

 + w
E,NN,I

best_score[“1 JJ”] = w
T,<S>,JJ

 + w
E,JJ,I

best_score[“1 VB”] = w
T,<S>,VB

 + w
E,VB,I

best_score[“1 PRP”] = w
T,<S>,PRP

 + w
E,PRP,I

best_score[“1 NNP”] = w
T,<S>,NNP

 + w
E,NNP,I
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HMM Viterbi with Features

● Can add additional features

1:NN

1:JJ

1:VB

1:PRP

1:NNP

…

0:<S>

I

best_score[“1 NN”] = w
T,<S>,NN

 + w
E,NN,I

 + w
CAPS,NN

best_score[“1 JJ”] = w
T,<S>,JJ

 + w
E,JJ,I

 + w
CAPS,JJ

best_score[“1 VB”] = w
T,<S>,VB

 + w
E,VB,I

 + w
CAPS,VB

best_score[“1 PRP”] = w
T,<S>,PRP

 + w
E,PRP,I

 + w
CAPS,PRP

best_score[“1 NNP”] = w
T,<S>,NNP

 + w
E,NNP,I

 + w
CAPS,NNP
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Learning In the Structured Perceptron

● Remember the perceptron algorithm

● If there is a mistake:

● Update weights to:
increase score of positive examples
decrease score of negative examples

● What is positive/negative in structured perceptron?

w ←w+ y ϕ (x)
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Learning in the Structured Perceptron

● Positive example, correct feature vector:

● Negative example, incorrect feature vector:

I       visited      Nara

PRP      VBD       NNP
φ(                           )

I       visited      Nara

NNP      VBD       NNP
φ(                           )
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Choosing an Incorrect Feature Vector

● There are too many incorrect feature vectors!

● Which do we use?

I       visited      Nara

NNP      VBD       NNP
φ(                           )

I       visited      Nara

PRP      VBD        NN
φ(                           )

I       visited      Nara

PRP        VB       NNP
φ(                           )
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Choosing an Incorrect Feature Vector

● Answer: We update using the incorrect answer with 
the highest score:

● Our update rule becomes:

● (Y' is the correct answer)
● Note: If highest scoring answer is correct, no change

Ŷ=argmaxY∑i
w i ϕi (X ,Y )

w ←w+ϕ(X ,Y ' )−ϕ (X , Ŷ )



  25

NLP Programming Tutorial 11 – The Structured Perceptron

Structured Perceptron Algorithm

create map w
for I iterations

for each labeled pair X, Y_prime in the data
Y_hat = hmm_viterbi(w, X)
phi_prime = create_features(X, Y_prime)
phi_hat = create_features(X, Y_hat)
w += phi_prime - phi_hat
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Creating HMM Features

● Make “create features” for each transition, emission

NNP,VBDcreate_trans(         ) NNP,Naracreate_emit(          )

φ[“T,NNP,VBD”] = 1 φ[“E,NNP,Nara”] = 1

φ[“CAPS,NNP”] = 1
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Creating HMM Features

● The create_features function does for all words

create_features(X, Y):
create map phi
for i in 0 .. |Y|:

if i == 0: first_tag = “<s>”
else:      first_tag = Y[i-1]
if i == |Y|: next_tag = “</s>”
else:   next_tag = Y[i]
phi += create_trans(first_tag, next_tag)

for i in 0 .. |Y|-1:
phi += create_emit(Y[i], X[i])

return phi
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Viterbi Algorithm Forward Step
split line into words
I = length(words)
make maps best_score, best_edge
best_score[“0 <s>”] = 0   # Start with <s>
best_edge[“0 <s>”] = NULL
for i in 0 … I-1:

for each prev in keys of possible_tags
for each next in keys of possible_tags

if best_score[“i prev”] and transition[“prev next”] exist
score = best_score[“i prev”] + 

-log P
T
(next|prev) + -log P

E
(word[i]|next)

 

   w*(create_t(prev,next)+create_e(next,word[i]))
if best_score[“i+1 next”] is new or < score

best_score[“i+1 next”] = score
best_edge[“i+1 next”] = “i prev”

# Finally, do the same for </s>
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Exercise
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Exercise
● Write train-hmm-percep and test-hmm-percep

● Test the program

● Input: test/05­{train,test}­input.txt
● Answer: test/05­{train,test}­answer.txt

● Train an HMM model on data/wiki­en­train.norm_pos 
and run the program on data/wiki­en­test.norm

● Measure the accuracy of your tagging with
script/gradepos.pl data/wiki­en­test.pos my_answer.pos

● Report the accuracy (compare to standard HMM)

● Challenge:
create new features
use training with margin or regularization
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Thank You!
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