
 1

NLP Programming Tutorial 13 – Beam and A* Search

NLP Programming Tutorial 13 -
Beam and A* Search

Graham Neubig
Nara Institute of Science and Technology (NAIST)

 2

NLP Programming Tutorial 13 – Beam and A* Search

Prediction Problems

● Given observable information X, find hidden Y

● Used in POS tagging, word segmentation, parsing

● Solving this argmax is “search”

● Until now, we mainly used the Viterbi algorithm

argmax
Y

P (Y∣X)

 3

NLP Programming Tutorial 13 – Beam and A* Search

Hidden Markov Models (HMMs) for
POS Tagging

● POS→POS transition probabilities
● Like a bigram model!

● POS→Word emission probabilities

natural language processing (nlp) ...

<s> JJ NN NN LRB NN RRB ... </s>

P
T
(JJ|<s>) P

T
(NN|JJ) P

T
(NN|NN) …

P
E
(natural|JJ) P

E
(language|NN) P

E
(processing|NN) …

P (Y)≈∏i=1

I+1
PT (y i∣y i−1)

P (X∣Y)≈∏1

I
PE(x i∣y i)

* *

* *

 4

NLP Programming Tutorial 13 – Beam and A* Search

Finding POS Tags with Markov Models

● The best path is our POS sequence

natural language processing (nlp)

1:NN

1:JJ

1:VB

1:LRB

1:RRB

…

2:NN

2:JJ

2:VB

2:LRB

2:RRB

…

3:NN

3:JJ

3:VB

3:LRB

3:RRB

…

4:NN

4:JJ

4:VB

4:LRB

4:RRB

…

5:NN

5:JJ

5:VB

5:LRB

5:RRB

…

6:NN

6:JJ

6:VB

6:LRB

6:RRB

…

0:<S>

…

<s> JJ NN NN LRB NN RRB

 5

NLP Programming Tutorial 13 – Beam and A* Search

Remember: Viterbi Algorithm Steps

● Forward step, calculate the best path to a node
● Find the path to each node with the lowest negative log

probability
● Backward step, reproduce the path

● This is easy, almost the same as word segmentation

 6

NLP Programming Tutorial 13 – Beam and A* Search

Forward Step: Part 1

● First, calculate transition from <S> and emission of the
first word for every POS

1:NN

1:JJ

1:VB

1:LRB

1:RRB

…

0:<S>

natural

best_score[“1 NN”] = -log P
T
(NN|<S>) + -log P

E
(natural | NN)

best_score[“1 JJ”] = -log P
T
(JJ|<S>) + -log P

E
(natural | JJ)

best_score[“1 VB”] = -log P
T
(VB|<S>) + -log P

E
(natural | VB)

best_score[“1 LRB”] = -log P
T
(LRB|<S>) + -log P

E
(natural | LRB)

best_score[“1 RRB”] = -log P
T
(RRB|<S>) + -log P

E
(natural | RRB)

 7

NLP Programming Tutorial 13 – Beam and A* Search

Forward Step: Middle Parts

● For middle words, calculate the minimum score for all
possible previous POS tags

1:NN

1:JJ

1:VB

1:LRB

1:RRB

…

natural
best_score[“2 NN”] = min(
 best_score[“1 NN”] + -log P

T
(NN|NN) + -log P

E
(language | NN),

 best_score[“1 JJ”] + -log P
T
(NN|JJ) + -log P

E
(language | NN),

 best_score[“1 VB”] + -log P
T
(NN|VB) + -log P

E
(language | NN),

 best_score[“1 LRB”] + -log P
T
(NN|LRB) + -log P

E
(language | NN),

 best_score[“1 RRB”] + -log P
T
(NN|RRB) + -log P

E
(language | NN),

 ...
)

2:NN

2:JJ

2:VB

2:LRB

2:RRB

…

language

best_score[“2 JJ”] = min(
 best_score[“1 NN”] + -log P

T
(JJ|NN) + -log P

E
(language | JJ),

 best_score[“1 JJ”] + -log P
T
(JJ|JJ) + -log P

E
(language | JJ),

 best_score[“1 VB”] + -log P
T
(JJ|VB) + -log P

E
(language | JJ),

 ...

 8

NLP Programming Tutorial 13 – Beam and A* Search

Forward Step: Final Part

● Finish up the sentence with the sentence final symbol

I:NN

I:JJ

I:VB

I:LRB

I:RRB

…

science
best_score[“I+1 </S>”] = min(
 best_score[“I NN”] + -log P

T
(</S>|NN),

 best_score[“I JJ”] + -log P
T
(</S>|JJ),

 best_score[“I VB”] + -log P
T
(</S>|VB),

 best_score[“I LRB”] + -log P
T
(</S>|LRB),

 best_score[“I NN”] + -log P
T
(</S>|RRB),

 ...
)

I+1:</S>

 9

NLP Programming Tutorial 13 – Beam and A* Search

Viterbi Algorithm and Time

● The time of the Viterbi algorithm depends on:
● type of problem: POS? Word Segmentation? Parsing?
● length of sentence: Longer Sentence=More Time
● number of tags: More Tags=More Time

● What is time complexity of HMM POS tagging?
● T = Number of tags
● N = length of sentence

 10

NLP Programming Tutorial 13 – Beam and A* Search

Simple Viterbi Doesn't Scale

● Tagging:
● Named Entity Recognition:

T = types of named entities (100s to 1000s)
● Supertagging:

T = grammar rules (100s)
● Other difficult search problems:

● Parsing: T * N3

● Speech Recognition: (frames)*(WFST states, millions)
● Machine Translation: NP complete

 11

NLP Programming Tutorial 13 – Beam and A* Search

Two Popular Solutions

● Beam Search:
● Remove low probability partial hypotheses
● + Simple, search time is stable
● - Might not find the best answer

● A* Search:
● Depth-first search, create a heuristic function of cost to

process the remaining hypotheses
● + Faster than Viterbi, exact
● - Must be able to create heuristic, search time is not

stable

 12

NLP Programming Tutorial 13 – Beam and A* Search

Beam Search

 13

NLP Programming Tutorial 13 – Beam and A* Search

Beam Search

● Choose beam of B hypotheses

● Do Viterbi algorithm, but keep only best B hypotheses
at each step

● Definition of “step” depends on task:
● Tagging: Same number of words tagged
● Machine Translation: Same number of words translated
● Speech Recognition: Same number of frames

processed

 14

NLP Programming Tutorial 13 – Beam and A* Search

Calculate Best Scores (First Word)

● Calculate best scores for first word

1:NN

1:JJ

1:VB

1:LRB

1:RRB

…

0:<S>

natural

best_score[“1 NN”] = -3.1

best_score[“1 JJ”] = -4.2

best_score[“1 VB”] = -5.4

best_score[“1 LRB”] = -8.2

best_score[“1 RRB”] = -8.1

 15

NLP Programming Tutorial 13 – Beam and A* Search

Keep Best B Hypotheses (w
1
)

● Remove hypotheses with low scores

● For example, B=3

1:NN

1:JJ

1:VB

1:LRB

1:RRB

…

0:<S>

natural

best_score[“1 NN”] = -3.1

best_score[“1 JJ”] = -4.2

best_score[“1 VB”] = -5.4

best_score[“1 LRB”] = -8.2

best_score[“1 RRB”] = -8.1

 16

NLP Programming Tutorial 13 – Beam and A* Search

Calculate Probabilities (w
2
)

● Calculate score, but ignore removed hypotheses

1:NN

1:JJ

1:VB

1:LRB

1:RRB

…

natural
best_score[“2 NN”] = min(
 best_score[“1 NN”] + -log P

T
(NN|NN) + -log P

E
(language | NN),

 best_score[“1 JJ”] + -log P
T
(NN|JJ) + -log P

E
(language | NN),

 best_score[“1 VB”] + -log P
T
(NN|VB) + -log P

E
(language | NN),

 best_score[“1 LRB”] + -log P
T
(NN|LRB) + -log P

E
(language | NN),

 best_score[“1 RRB”] + -log P
T
(NN|RRB) + -log P

E
(language | NN),

 ...
)

2:NN

2:JJ

2:VB

2:LRB

2:RRB

…

language

best_score[“2 JJ”] = min(
 best_score[“1 NN”] + -log P

T
(JJ|NN) + -log P

E
(language | JJ),

 best_score[“1 JJ”] + -log P
T
(JJ|JJ) + -log P

E
(language | JJ),

 best_score[“1 VB”] + -log P
T
(JJ|VB) + -log P

E
(language | JJ),

 ...

 17

NLP Programming Tutorial 13 – Beam and A* Search

Beam Search is Faster

● Remove some candidates from consideration
→ faster speed!

● What is the time complexity?
● T = Number of tags
● N = length of sentence
● B = beam width

 18

NLP Programming Tutorial 13 – Beam and A* Search

Implementation: Forward Step
best_score[“0 <s>”] = 0 # Start with <s>
best_edge[“0 <s>”] = NULL
active_tags[0] = [“<s>”]
for i in 0 … I-1:

make map my_best
for each prev in keys of active_tags[i]

for each next in keys of possible_tags
if best_score[“i prev”] and transition[“prev next”] exist

score = best_score[“i prev”] +
-log P

T
(next|prev) + -log P

E
(word[i]|next)

if best_score[“i+1 next”] is new or > score
best_score[“i+1 next”] = score
best_edge[“i+1 next”] = “i prev”
my_best[next] = score

active_tags[i+1] = best B elements of my_best
Finally, do the same for </s>

 19

NLP Programming Tutorial 13 – Beam and A* Search

A* Search

 20

NLP Programming Tutorial 13 – Beam and A* Search

Depth-First Search

● Always expand the state with the highest score

● Use a heap (priority queue) to keep track of states
● heap: a data structure that can add elements in O(1)

and find the highest scoring element in time O(log n)
● Start with only the initial state on the heap
● Expand the best state on the heap until search finishes

● Compare with breadth-first search, which expands
states at the same step (Viterbi, beam search)

 21

NLP Programming Tutorial 13 – Beam and A* Search

Depth-First Search

natural language processing

1:NN

1:JJ

1:VB

1:LRB

1:RRB

2:NN

2:JJ

2:VB

2:LRB

2:RRB

3:NN

3:JJ

3:VB

3:LRB

3:RRB

0:<S>

Heap

● Initial state:

0:<S> 0

 22

NLP Programming Tutorial 13 – Beam and A* Search

Depth-First Search

natural language processing

1:NN

1:JJ

1:VB

1:LRB

1:RRB

2:NN

2:JJ

2:VB

2:LRB

2:RRB

3:NN

3:JJ

3:VB

3:LRB

3:RRB

0:<S>

Heap

● Process 0:<S>

1:NN -3.1
-3.1

-4.2

-5.4

-8.2

-8.1

1:JJ -4.2
1:VB -5.4

1:LRB -8.2
1:RRB -8.1

 23

NLP Programming Tutorial 13 – Beam and A* Search

Depth-First Search

natural language processing

1:NN

1:JJ

1:VB

1:LRB

1:RRB

2:NN

2:JJ

2:VB

2:LRB

2:RRB

3:NN

3:JJ

3:VB

3:LRB

3:RRB

0:<S>

Heap

● Process 1:NN

-3.1

-4.2

-5.4

-8.2

-8.1

1:JJ -4.2
1:VB -5.4

1:LRB -8.2
1:RRB -8.1

-5.5

-6.7

-5.7

-11.2

-11.4

2:NN -5.5
2:VB -5.7
2:JJ -6.7

2:LRB -11.2
2:RRB -11.4

 24

NLP Programming Tutorial 13 – Beam and A* Search

Depth-First Search

natural language processing

1:NN

1:JJ

1:VB

1:LRB

1:RRB

2:NN

2:JJ

2:VB

2:LRB

2:RRB

3:NN

3:JJ

3:VB

3:LRB

3:RRB

0:<S>

Heap

● Process 1:JJ

-3.1

-4.2

-5.4

-8.2

-8.1

1:VB -5.4

1:LRB -8.2
1:RRB -8.1

-5.5

-6.7

-5.7

-11.2

-11.4

2:NN -5.5
2:VB -5.7

2:JJ -6.7

2:LRB -11.2
2:RRB -11.4

-5.3

-5.9

-7.2

-11.9

-11.7

From 1:NN 1:JJ

2:NN -5.3

2:JJ -5.9

 25

NLP Programming Tutorial 13 – Beam and A* Search

Depth-First Search

natural language processing

1:NN

1:JJ

1:VB

1:LRB

1:RRB

2:NN

2:JJ

2:VB

2:LRB

2:RRB

3:NN

3:JJ

3:VB

3:LRB

3:RRB

0:<S>

Heap

● Process 1:JJ

-3.1

-4.2

-5.4

-8.2

-8.1

-5.7

-11.2

-11.4

-5.3

-5.9

1:VB -5.4

1:LRB -8.2
1:RRB -8.1

2:NN -5.5
2:VB -5.7

2:JJ -6.7

2:LRB -11.2
2:RRB -11.4

2:NN -5.3

2:JJ -5.9

 26

NLP Programming Tutorial 13 – Beam and A* Search

Depth-First Search

natural language processing

1:NN

1:JJ

1:VB

1:LRB

1:RRB

2:NN

2:JJ

2:VB

2:LRB

2:RRB

3:NN

3:JJ

3:VB

3:LRB

3:RRB

0:<S>

Heap

● Process 2:NN

-3.1

-4.2

-5.4

-8.2

-8.1

-5.7

-11.2

-11.4

-5.3

-5.9

1:VB -5.4

1:LRB -8.2
1:RRB -8.1

2:NN -5.5
2:VB -5.7

2:JJ -6.7

2:LRB -11.2
...

2:JJ -5.9

-7.2

-9.8

-7.3

-16.3

-17.0

3:NN -7.2
3:VB -7.3

3:JJ -9.8

 27

NLP Programming Tutorial 13 – Beam and A* Search

Depth-First Search

natural language processing

1:NN

1:JJ

1:VB

1:LRB

1:RRB

2:NN

2:JJ

2:VB

2:LRB

2:RRB

3:NN

3:JJ

3:VB

3:LRB

3:RRB

0:<S>

Heap

● Process 1:VB

-3.1

-4.2

-5.4

-8.2

-8.1

-5.7

-11.2

-11.4

-5.3

-5.9

1:LRB -8.2
1:RRB -8.1

2:NN -5.5
2:VB -5.7

2:JJ -6.7

2:LRB -11.2
...

2:JJ -5.9
-7.2

-9.8

-7.3

-16.3

-17.0

3:NN -7.2
3:VB -7.3

3:JJ -9.8

-12.7

-14.5

-14.7

-7.3

-8.9

 28

NLP Programming Tutorial 13 – Beam and A* Search

Depth-First Search

natural language processing

1:NN

1:JJ

1:VB

1:LRB

1:RRB

2:NN

2:JJ

2:VB

2:LRB

2:RRB

3:NN

3:JJ

3:VB

3:LRB

3:RRB

0:<S>

Heap

● Do not process 2:NN (has already been processed)

-3.1

-4.2

-5.4

-8.2

-8.1

-5.7

-11.2

-11.4

-5.3

-5.9

1:LRB -8.2
1:RRB -8.1

2:VB -5.7

2:JJ -6.7

2:LRB -11.2
...

2:JJ -5.9-7.2

-9.8

-7.3

-16.3

-17.0

3:NN -7.2
3:VB -7.3

3:JJ -9.8

 29

NLP Programming Tutorial 13 – Beam and A* Search

Problem: Still Inefficient

● Depth-first search does not work well for long
sentences

● Why?
● Hint: Think of 1:VB in previous example

 30

NLP Programming Tutorial 13 – Beam and A* Search

A* Search: Add Optimistic Heuristic

● Consider the words remaining

● Use Optimistic Heuristic: BEST score possible

● Optimistic heuristic for tagging: Best Emission Prob

natural language processing

log(P(natural|NN)) = -2.4
log(P(natural|JJ)) = -2.0
log(P(natural|VB)) = -3.1
log(P(natural|LRB)) = -7.0
log(P(natural|RRB)) = -7.0

log(P(lang.|NN)) = -2.4
log(P(lang.|JJ)) = -3.0
log(P(lang.|VB)) = -3.2
log(P(lang.|LRB)) = -7.9
log(P(lang.|RRB)) = -7.9

log(P(proc.|NN)) = -2.5
log(P(proc.|JJ)) = -3.4
log(P(proc.|VB)) = -1.5
log(P(proc.|LRB)) = -6.9
log(P(proc.|RRB)) = -6.9

H(4+) = 0.0H(3+) = -1.5H(2+) = -3.9H(1+) = -5.9

 31

NLP Programming Tutorial 13 – Beam and A* Search

A* Search: Add Optimistic Heuristic

● Use Forward Score + Optimistic Heuristic

Regular Heap

1:LRB F(1:LRB)=-8.2 H(2+)=-3.9
1:RRB F(1:RRB)=-8.1 H(2+)=-3.9

2:VB F(2:VB)=-5.7 H(3+)=-1.5

2:JJ F(2:JJ)=-6.7 H(3+)=-1.5

2:LRB F(2:LRB)=-11.2 H(3+)=-1.5

2:JJ F(2:JJ)=-5.9 H(3+)=-1.5

3:NN F(3:NN)=-7.2 H(4+)=-0.0
3:VB F(3:VB)=-7.3 H(4+)=-0.0

3:JJ F(3:JJ)=-9.8 H(4+)=-0.0

A* Heap

1:LRB -12.1
1:RRB -12.0

2:VB -7.2

2:JJ -8.2

2:LRB -12.7

2:JJ -7.4

3:NN -7.2

3:VB -7.3

3:JJ -9.8

 32

NLP Programming Tutorial 13 – Beam and A* Search

Exercise

 33

NLP Programming Tutorial 13 – Beam and A* Search

Exercise
● Write test-hmm-beam

● Test the program

● Input: test/05{train,test}input.txt
● Answer: test/05{train,test}answer.txt

● Train an HMM model on data/wikientrain.norm_pos
and run the program on data/wikientest.norm

● Measure the accuracy of your tagging with
script/gradepos.pl data/wikientest.pos my_answer.pos

● Report the accuracy for different beam sizes

● Challenge: implement A* search

 34

NLP Programming Tutorial 13 – Beam and A* Search

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

