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Prediction Problems

● Given observable information X, find hidden Y

● Used in POS tagging, word segmentation, parsing

● Solving this argmax is “search”

● Until now, we mainly used the Viterbi algorithm

argmax
Y

P (Y∣X )
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Hidden Markov Models (HMMs) for 
POS Tagging

● POS→POS transition probabilities
● Like a bigram model!

● POS→Word emission probabilities

natural language processing (         nlp           )          ...

<s> JJ NN NN LRB NN RRB ... </s>

P
T
(JJ|<s>) P

T
(NN|JJ) P

T
(NN|NN) …

P
E
(natural|JJ) P

E
(language|NN) P

E
(processing|NN) …

P (Y )≈∏i=1

I+1
PT (y i∣y i−1 )

P (X∣Y )≈∏1

I
PE( x i∣y i )

* *

* *
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Finding POS Tags with Markov Models

● The best path is our POS sequence

natural    language  processing    (              nlp              )

1:NN

1:JJ

1:VB

1:LRB

1:RRB

…

2:NN

2:JJ

2:VB

2:LRB

2:RRB

…

3:NN

3:JJ

3:VB

3:LRB

3:RRB

…

4:NN

4:JJ

4:VB

4:LRB

4:RRB

…

5:NN

5:JJ

5:VB

5:LRB

5:RRB

…

6:NN

6:JJ

6:VB

6:LRB

6:RRB

…

0:<S>

…

<s>           JJ            NN           NN           LRB          NN          RRB
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Remember: Viterbi Algorithm Steps

● Forward step, calculate the best path to a node
● Find the path to each node with the lowest negative log 

probability
● Backward step, reproduce the path

● This is easy, almost the same as word segmentation
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Forward Step: Part 1

● First, calculate transition from <S> and emission of the 
first word for every POS

1:NN

1:JJ

1:VB

1:LRB

1:RRB

…

0:<S>

natural

best_score[“1 NN”] = -log P
T
(NN|<S>) + -log P

E
(natural | NN)

best_score[“1 JJ”] = -log P
T
(JJ|<S>) + -log P

E
(natural | JJ)

best_score[“1 VB”] = -log P
T
(VB|<S>) + -log P

E
(natural | VB)

best_score[“1 LRB”] = -log P
T
(LRB|<S>) + -log P

E
(natural | LRB)

best_score[“1 RRB”] = -log P
T
(RRB|<S>) + -log P

E
(natural | RRB)
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Forward Step: Middle Parts

● For middle words, calculate the minimum score for all 
possible previous POS tags

1:NN

1:JJ

1:VB

1:LRB

1:RRB

…

natural
best_score[“2 NN”] = min( 
 best_score[“1 NN”] + -log P

T
(NN|NN) + -log P

E
(language | NN),

 best_score[“1 JJ”] + -log P
T
(NN|JJ) + -log P

E
(language | NN),

 best_score[“1 VB”] + -log P
T
(NN|VB) + -log P

E
(language | NN),

 best_score[“1 LRB”] + -log P
T
(NN|LRB) + -log P

E
(language | NN),

 best_score[“1 RRB”] + -log P
T
(NN|RRB) + -log P

E
(language | NN),

 ...
)

2:NN

2:JJ

2:VB

2:LRB

2:RRB

…

language

best_score[“2 JJ”] = min( 
 best_score[“1 NN”] + -log P

T
(JJ|NN) + -log P

E
(language | JJ),

 best_score[“1 JJ”] + -log P
T
(JJ|JJ) + -log P

E
(language | JJ),

 best_score[“1 VB”] + -log P
T
(JJ|VB) + -log P

E
(language | JJ),

                                         ...
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Forward Step: Final Part

● Finish up the sentence with the sentence final symbol

I:NN

I:JJ

I:VB

I:LRB

I:RRB

…

science
best_score[“I+1 </S>”] = min(
   best_score[“I NN”] + -log P

T
(</S>|NN),

   best_score[“I JJ”] + -log P
T
(</S>|JJ),

   best_score[“I VB”] + -log P
T
(</S>|VB),

   best_score[“I LRB”] + -log P
T
(</S>|LRB),

   best_score[“I NN”] + -log P
T
(</S>|RRB),

   ...
)

I+1:</S>
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Viterbi Algorithm and Time

● The time of the Viterbi algorithm depends on:
● type of problem: POS? Word Segmentation? Parsing?
● length of sentence: Longer Sentence=More Time
● number of tags: More Tags=More Time

● What is time complexity of HMM POS tagging?
● T = Number of tags
● N = length of sentence
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Simple Viterbi Doesn't Scale

● Tagging:
● Named Entity Recognition:

T = types of named entities (100s to 1000s)
● Supertagging:

T = grammar rules (100s)
● Other difficult search problems:

● Parsing: T * N3

● Speech Recognition: (frames)*(WFST states, millions)
● Machine Translation: NP complete
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Two Popular Solutions

● Beam Search:
● Remove low probability partial hypotheses
● + Simple, search time is stable
● - Might not find the best answer

● A* Search:
● Depth-first search, create a heuristic function of cost to 

process the remaining hypotheses
● + Faster than Viterbi, exact
● - Must be able to create heuristic, search time is not 

stable
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Beam Search
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Beam Search

● Choose beam of B hypotheses

● Do Viterbi algorithm, but keep only best B hypotheses 
at each step

● Definition of “step” depends on task:
● Tagging: Same number of words tagged
● Machine Translation: Same number of words translated
● Speech Recognition: Same number of frames 

processed
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Calculate Best Scores (First Word)

● Calculate best scores for first word

1:NN

1:JJ

1:VB

1:LRB

1:RRB

…

0:<S>

natural

best_score[“1 NN”] = -3.1

best_score[“1 JJ”] = -4.2

best_score[“1 VB”] = -5.4

best_score[“1 LRB”] = -8.2

best_score[“1 RRB”] = -8.1
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Keep Best B Hypotheses (w
1
)

● Remove hypotheses with low scores

● For example, B=3

1:NN

1:JJ

1:VB

1:LRB

1:RRB

…

0:<S>

natural

best_score[“1 NN”] = -3.1

best_score[“1 JJ”] = -4.2

best_score[“1 VB”] = -5.4

best_score[“1 LRB”] = -8.2

best_score[“1 RRB”] = -8.1
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Calculate Probabilities (w
2
)

● Calculate score, but ignore removed hypotheses

1:NN

1:JJ

1:VB

1:LRB

1:RRB

…

natural
best_score[“2 NN”] = min( 
 best_score[“1 NN”] + -log P

T
(NN|NN) + -log P

E
(language | NN),

 best_score[“1 JJ”] + -log P
T
(NN|JJ) + -log P

E
(language | NN),

 best_score[“1 VB”] + -log P
T
(NN|VB) + -log P

E
(language | NN),

 best_score[“1 LRB”] + -log P
T
(NN|LRB) + -log P

E
(language | NN),

 best_score[“1 RRB”] + -log P
T
(NN|RRB) + -log P

E
(language | NN),

 ...
)

2:NN

2:JJ

2:VB

2:LRB

2:RRB

…

language

best_score[“2 JJ”] = min( 
 best_score[“1 NN”] + -log P

T
(JJ|NN) + -log P

E
(language | JJ),

 best_score[“1 JJ”] + -log P
T
(JJ|JJ) + -log P

E
(language | JJ),

 best_score[“1 VB”] + -log P
T
(JJ|VB) + -log P

E
(language | JJ),

                                         ...
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Beam Search is Faster

● Remove some candidates from consideration
→ faster speed!

● What is the time complexity?
● T = Number of tags
● N = length of sentence
● B = beam width
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Implementation: Forward Step 
best_score[“0 <s>”] = 0   # Start with <s>
best_edge[“0 <s>”] = NULL
active_tags[0] = [ “<s>” ]
for i in 0 … I-1:

make map my_best
for each prev in keys of active_tags[i]

for each next in keys of possible_tags
if best_score[“i prev”] and transition[“prev next”] exist

score = best_score[“i prev”] + 
-log P

T
(next|prev) + -log P

E
(word[i]|next)

if best_score[“i+1 next”] is new or > score
best_score[“i+1 next”] = score
best_edge[“i+1 next”] = “i prev”
my_best[next] = score

active_tags[i+1] = best B elements of my_best
# Finally, do the same for </s>
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A* Search
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Depth-First Search

● Always expand the state with the highest score

● Use a heap (priority queue) to keep track of states
● heap: a data structure that can add elements in O(1) 

and find the highest scoring element in time O(log n)
● Start with only the initial state on the heap
● Expand the best state on the heap until search finishes

● Compare with breadth-first search, which expands 
states at the same step (Viterbi, beam search)
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Depth-First Search

natural      language      processing

1:NN

1:JJ

1:VB

1:LRB

1:RRB

2:NN

2:JJ

2:VB

2:LRB

2:RRB

3:NN

3:JJ

3:VB

3:LRB

3:RRB

0:<S>

Heap

● Initial state:

0:<S> 0
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Depth-First Search

natural      language      processing

1:NN

1:JJ

1:VB

1:LRB

1:RRB

2:NN

2:JJ

2:VB

2:LRB

2:RRB

3:NN

3:JJ

3:VB

3:LRB

3:RRB

0:<S>

Heap

● Process 0:<S>

1:NN -3.1
-3.1

-4.2

-5.4

-8.2

-8.1

1:JJ -4.2
1:VB -5.4

1:LRB -8.2
1:RRB -8.1
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Depth-First Search

natural      language      processing

1:NN

1:JJ

1:VB

1:LRB

1:RRB

2:NN

2:JJ

2:VB

2:LRB

2:RRB

3:NN

3:JJ

3:VB

3:LRB

3:RRB

0:<S>

Heap

● Process 1:NN

-3.1

-4.2

-5.4

-8.2

-8.1

1:JJ -4.2
1:VB -5.4

1:LRB -8.2
1:RRB -8.1

-5.5

-6.7

-5.7

-11.2

-11.4

2:NN -5.5
2:VB -5.7
2:JJ -6.7

2:LRB -11.2
2:RRB -11.4
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Depth-First Search

natural      language      processing

1:NN

1:JJ

1:VB

1:LRB

1:RRB

2:NN

2:JJ

2:VB

2:LRB

2:RRB

3:NN

3:JJ

3:VB

3:LRB

3:RRB

0:<S>

Heap

● Process 1:JJ

-3.1

-4.2

-5.4

-8.2

-8.1

1:VB -5.4

1:LRB -8.2
1:RRB -8.1

-5.5

-6.7

-5.7

-11.2

-11.4

2:NN -5.5
2:VB -5.7

2:JJ -6.7

2:LRB -11.2
2:RRB -11.4

-5.3

-5.9

-7.2

-11.9

-11.7

From 1:NN   1:JJ

2:NN -5.3

2:JJ -5.9
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Depth-First Search

natural      language      processing

1:NN

1:JJ

1:VB

1:LRB

1:RRB

2:NN

2:JJ

2:VB

2:LRB

2:RRB

3:NN

3:JJ

3:VB

3:LRB

3:RRB

0:<S>

Heap

● Process 1:JJ

-3.1

-4.2

-5.4

-8.2

-8.1

-5.7

-11.2

-11.4

-5.3

-5.9

1:VB -5.4

1:LRB -8.2
1:RRB -8.1

2:NN -5.5
2:VB -5.7

2:JJ -6.7

2:LRB -11.2
2:RRB -11.4

2:NN -5.3

2:JJ -5.9
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Depth-First Search

natural      language      processing

1:NN

1:JJ

1:VB

1:LRB

1:RRB

2:NN

2:JJ

2:VB

2:LRB

2:RRB

3:NN

3:JJ

3:VB

3:LRB

3:RRB

0:<S>

Heap

● Process 2:NN

-3.1

-4.2

-5.4

-8.2

-8.1

-5.7

-11.2

-11.4

-5.3

-5.9

1:VB -5.4

1:LRB -8.2
1:RRB -8.1

2:NN -5.5
2:VB -5.7

2:JJ -6.7

2:LRB -11.2
...

2:JJ -5.9

-7.2

-9.8

-7.3

-16.3

-17.0

3:NN -7.2
3:VB -7.3

3:JJ   -9.8
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Depth-First Search

natural      language      processing

1:NN

1:JJ

1:VB

1:LRB

1:RRB

2:NN

2:JJ

2:VB

2:LRB

2:RRB

3:NN

3:JJ

3:VB

3:LRB

3:RRB

0:<S>

Heap

● Process 1:VB

-3.1

-4.2

-5.4

-8.2

-8.1

-5.7

-11.2

-11.4

-5.3

-5.9

1:LRB -8.2
1:RRB -8.1

2:NN -5.5
2:VB -5.7

2:JJ -6.7

2:LRB -11.2
...

2:JJ -5.9
-7.2

-9.8

-7.3

-16.3

-17.0

3:NN -7.2
3:VB -7.3

3:JJ   -9.8

-12.7

-14.5

-14.7

-7.3

-8.9
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Depth-First Search

natural      language      processing

1:NN

1:JJ

1:VB

1:LRB

1:RRB

2:NN

2:JJ

2:VB

2:LRB

2:RRB

3:NN

3:JJ

3:VB

3:LRB

3:RRB

0:<S>

Heap

● Do not process 2:NN (has already been processed)

-3.1

-4.2

-5.4

-8.2

-8.1

-5.7

-11.2

-11.4

-5.3

-5.9

1:LRB -8.2
1:RRB -8.1

2:VB -5.7

2:JJ -6.7

2:LRB -11.2
...

2:JJ -5.9-7.2

-9.8

-7.3

-16.3

-17.0

3:NN -7.2
3:VB -7.3

3:JJ   -9.8
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Problem: Still Inefficient

● Depth-first search does not work well for long 
sentences

● Why?
● Hint: Think of 1:VB in previous example 



  30

NLP Programming Tutorial 13 – Beam and A* Search

A* Search: Add Optimistic Heuristic

● Consider the words remaining

● Use Optimistic Heuristic: BEST score possible

● Optimistic heuristic for tagging: Best Emission Prob

natural      language             processing

log(P(natural|NN)) = -2.4
log(P(natural|JJ)) = -2.0
log(P(natural|VB)) = -3.1
log(P(natural|LRB)) = -7.0
log(P(natural|RRB)) = -7.0

log(P(lang.|NN)) = -2.4
log(P(lang.|JJ)) = -3.0
log(P(lang.|VB)) = -3.2
log(P(lang.|LRB)) = -7.9
log(P(lang.|RRB)) = -7.9

log(P(proc.|NN)) = -2.5
log(P(proc.|JJ)) = -3.4
log(P(proc.|VB)) = -1.5
log(P(proc.|LRB)) = -6.9
log(P(proc.|RRB)) = -6.9

H(4+) = 0.0H(3+) = -1.5H(2+) = -3.9H(1+) = -5.9
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A* Search: Add Optimistic Heuristic

● Use Forward Score + Optimistic Heuristic

Regular Heap

1:LRB F(1:LRB)=-8.2 H(2+)=-3.9
1:RRB F(1:RRB)=-8.1 H(2+)=-3.9

2:VB F(2:VB)=-5.7 H(3+)=-1.5

2:JJ F(2:JJ)=-6.7 H(3+)=-1.5

2:LRB F(2:LRB)=-11.2 H(3+)=-1.5

2:JJ F(2:JJ)=-5.9 H(3+)=-1.5

3:NN F(3:NN)=-7.2 H(4+)=-0.0
3:VB F(3:VB)=-7.3 H(4+)=-0.0

3:JJ   F(3:JJ)=-9.8 H(4+)=-0.0

A* Heap

1:LRB -12.1
1:RRB -12.0

2:VB -7.2

2:JJ -8.2

2:LRB -12.7

2:JJ -7.4

3:NN -7.2

3:VB -7.3

3:JJ   -9.8
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Exercise
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Exercise
● Write test-hmm-beam

● Test the program

● Input: test/05{train,test}input.txt
● Answer: test/05{train,test}answer.txt

● Train an HMM model on data/wikientrain.norm_pos 
and run the program on data/wikientest.norm

● Measure the accuracy of your tagging with
script/gradepos.pl data/wikientest.pos my_answer.pos

● Report the accuracy for different beam sizes

● Challenge: implement A* search
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Thank You!
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