

Sequential Data Modeling -The Structured Perceptron

Graham Neubig Nara Institute of Science and Technology (NAIST)

Prediction Problems

Given x, predict y

	Prediction	Problems
Given	Χ,	predict y

<u>A book review</u>
Oh, man I love this book!
This book is so boring

predict y ls it positive?

yes

no

Binary Prediction (2 choices)

<u>A tweet</u> On the way to the park! 公園に行くなう! <u>Its language</u> English Japanese

Multi-class Prediction (several choices)

<u>A sentence</u>

I read a book

Its parts-of-speech

```
VBD DET NN
read a book
```

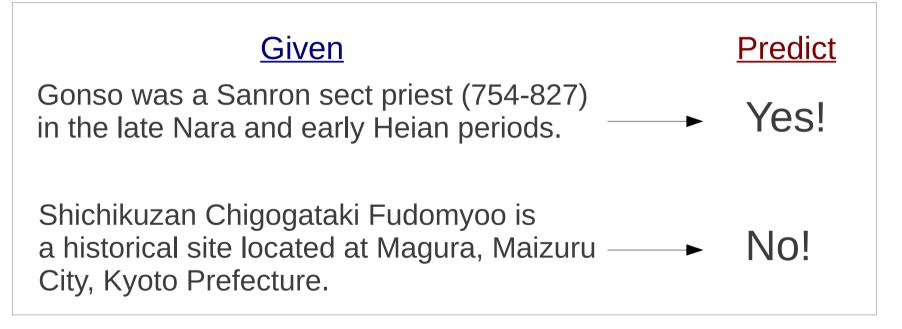
Structured Prediction (millions of choices)

Sequential prediction is a subset

Simple Prediction: The Perceptron Model

Example we will use:

- Given an introductory sentence from Wikipedia
- Predict whether the article is about a person



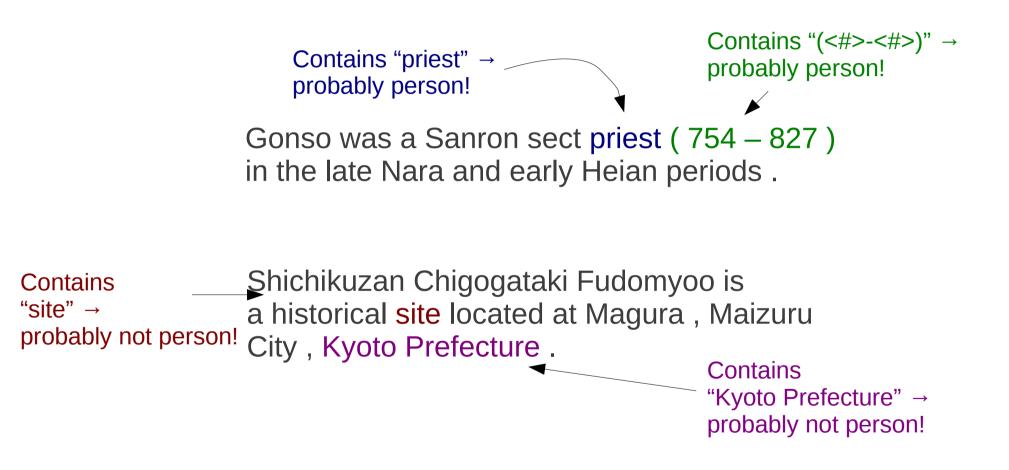
• This is binary classification (of course!)

How do We Predict?

Gonso was a Sanron sect priest (754 - 827) in the late Nara and early Heian periods .

Shichikuzan Chigogataki Fudomyoo is a historical site located at Magura , Maizuru City , Kyoto Prefecture .

How do We Predict?



Combining Pieces of Information

• Each element that helps us predict is a feature

contains "priest"contains "(<#>-<#>)"contains "site"contains "Kyoto Prefecture"

 Each feature has a weight, *positive* if it indicates "yes", and *negative* if it indicates "no"

• For a new example, sum the weights

MAIST

Kuya (903-972) was a priest 2 + -1 + 1 = 2born in Kyoto Prefecture.

• If the sum is at least 0: "yes", otherwise: "no"

Let me Say that in Math!

$$y = \operatorname{sign}(w \cdot \varphi(x))$$

= sign $\left(\sum_{i=1}^{I} w_i \cdot \varphi_i(x)\right)$

- x: the input
- $\phi(\mathbf{x})$: vector of feature functions { $\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \dots, \phi_1(\mathbf{x})$ }
- **w**: the weight vector $\{w_1, w_2, ..., w_l\}$
- y: the prediction, +1 if "yes", -1 if "no"
 - (sign(v) is +1 if v >= 0, -1 otherwise)

Example Feature Functions: Unigram Features

• Equal to "number of times a particular word appears"

$$\begin{array}{l} \textbf{x} = \textbf{A} \text{ site , located in Maizuru , Kyoto} \\ \phi_{unigram "A"}(\textbf{x}) = 1 \quad \phi_{unigram "site"}(\textbf{x}) = 1 \quad \phi_{unigram ","}(\textbf{x}) = 2 \\ \phi_{unigram "located"}(\textbf{x}) = 1 \quad \phi_{unigram "in"}(\textbf{x}) = 1 \\ \phi_{unigram "Maizuru"}(\textbf{x}) = 1 \quad \phi_{unigram "Kyoto"}(\textbf{x}) = 1 \\ \phi_{unigram "the"}(\textbf{x}) = 0 \quad \phi_{unigram "temple"}(\textbf{x}) = 0 \\ \dots \end{array} \right\}$$

 For convenience, we use feature names (φ_{unigram "A"}) instead of feature indexes (φ₁)

Calculating the Weighted Sum x = A site , located in Maizuru , Kyoto

 $\phi_{\text{unigram "A"}}(x)$ = 1 $\phi_{\text{unigram "site"}}(x)$ = 1 = 1 φ_{unigram "located"}(X) φ_{unigram "Maizuru"}(X) = 1 = 2 * φ_{unigram ","}(X) = 1 $\phi_{\text{unigram "in"}}(x)$ = 1 φ_{unigram "Kyoto"}(X) = 0 φ_{unigram "priest"}(X) = 0φ_{unigram "black"}(X)

Wunigram "a"	= 0		0	-
Wunigram "site"	= -3		-3	- -
Wunigram "located"	= 0		0	-
W unigram "Maizuru"	= 0		0	4
W _{unigram ","}	= 0	=	0	
Wunigram "in"	= 0		0	4
Wunigram "Kyoto"	= 0		0	
Wunigram "priest"	= 2		0	-
Wunigram "black"	= 0		0	-

= -3 → No! ¹¹

Learning Weights Using the Perceptron Algorithm

Learning Weights

- Manually creating weights is hard
 - Many many possible useful features
 - Changing weights changes results in unexpected ways
- Instead, we can learn from labeled data

у	X
1	FUJIWARA no Chikamori (year of birth and death unknown) was a samurai and poet who lived at the end of the Heian period .
1	Ryonen (1646 - October 29, 1711) was a Buddhist nun of the Obaku Sect who lived from the early Edo period to the mid-Edo period.
-1	A moat settlement is a village surrounded by a moat .
-1	Fushimi Momoyama Athletic Park is located in Momoyama-cho , Kyoto City , Kyoto Prefecture .

Online Learning

```
create map w
for / iterations
for each labeled pair x, y in the data
    phi = CREATE_FEATURES(X)
    y' = PREDICT_ONE(W, phi)
    if y' != y
        UPDATE_WEIGHTS(W, phi, y)
```

- In other words
 - Try to classify each training example
 - Every time we make a mistake, update the weights
- Many different online learning algorithms
 - The most simple is the perceptron

Perceptron Weight Update $w \leftarrow w + y \phi(x)$

- In other words:
 - If y=1, increase the weights for features in $\phi(x)$
 - Features for positive examples get a higher weight
 - If y=-1, decrease the weights for features in $\phi(x)$
 - Features for negative examples get a lower weight

 \rightarrow Every time we update, our predictions get better!

16

Example: Initial Update

Initialize w=0

 $\mathbf{x} = \mathbf{A}$ site, located in Maizuru, Kyoto $\mathbf{y} = -1$ $\mathbf{w} \cdot \mathbf{\phi}(\mathbf{x}) = 0$ $\mathbf{y}' = \operatorname{sign}(\mathbf{w} \cdot \mathbf{\phi}(\mathbf{x})) = 1$ $y' \neq y$ $w \leftarrow w + y \varphi(x)$ $V_{\text{unigram "Maizuru"}} = -1$ $V_{\text{unigram ","}} = -2$ $V_{\text{unigram "in"}} = -1$ $V_{\text{unigram "Kvata"}} = -1$ W unigram "A" W = -1 W = -1 W unigram "site" W = -1 W unigram "located" W unigram "Kyoto"

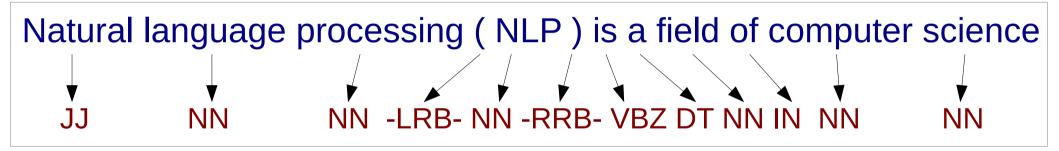
Example: Second Update x = Shoken , monk born in Kyoto y = 1-1 -1 $\mathbf{w} \cdot \mathbf{\phi}(\mathbf{x}) = -4$ $\mathbf{y}' = \operatorname{sign}(\mathbf{w} \cdot \mathbf{\phi}(\mathbf{x})) = -1$ $y' \neq y$ $w \leftarrow w + y \varphi(x)$ W W unigram "Shoken" = 1 W unigram "Maizuru" unigram "A" = -1 = -1 W = 1 W W unigram "," unigram "site" unigram "monk" = 0 W = -1 = 1 W W unigram "in" unigram "located" unigram "born" = 0W unigram "Kyoto"

17

Review: The HMM Model

Part of Speech (POS) Tagging

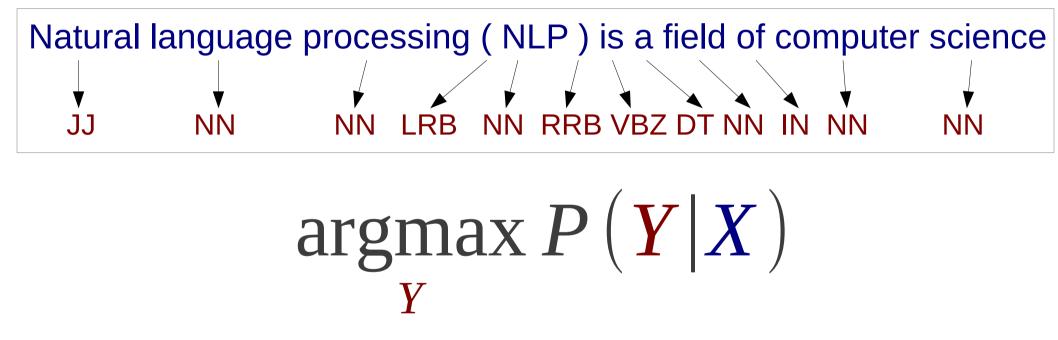
Given a sentence X, predict its part of speech sequence Y



- A type of "structured" prediction, from two weeks ago
- How can we do this? Any ideas?

Probabilistic Model for Tagging

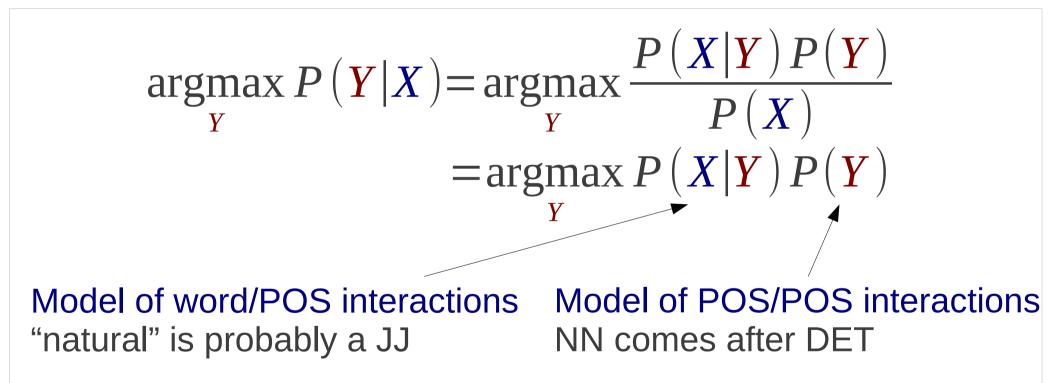
"Find the most probable tag sequence, given the sentence"



• Any ideas?

Generative Sequence Model

• First decompose probability using Bayes' law



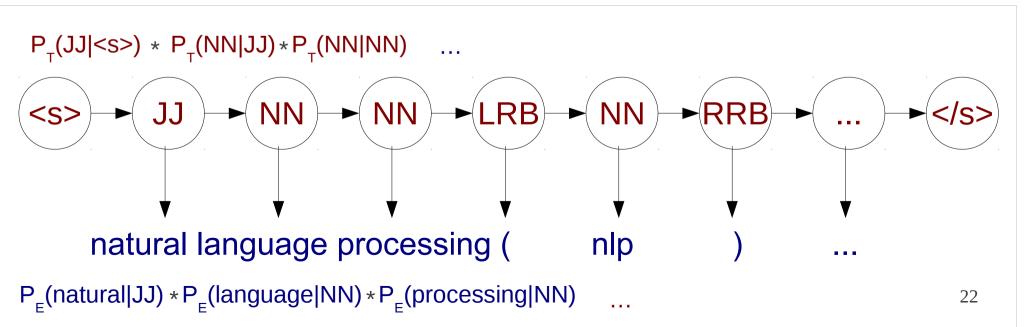
• Also sometimes called the "noisy-channel model"

MAIST 📈

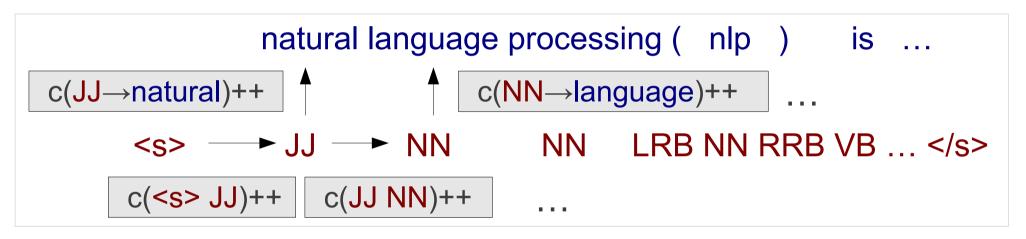
Hidden Markov Models (HMMs) for **POS** Tagging

- POS→POS transition probabilities $\boldsymbol{P}(\boldsymbol{Y}) \approx \prod_{i=1}^{l+1} \boldsymbol{P}_{T}(\boldsymbol{y}_{i} | \boldsymbol{y}_{i-1})$
 - Like a bigram model!
- POS→Word emission probabilities

 $P(X|Y) \approx \prod_{i=1}^{\prime} P_{E}(x_{i}|y_{i})$



Count the number of occurrences in the corpus and



Divide by context to get probability

 $P_{T}(LRB|NN) = c(NN LRB)/c(NN) = 1/3$ $P_{E}(language|NN) = c(NN → language)/c(NN) = 1/3$

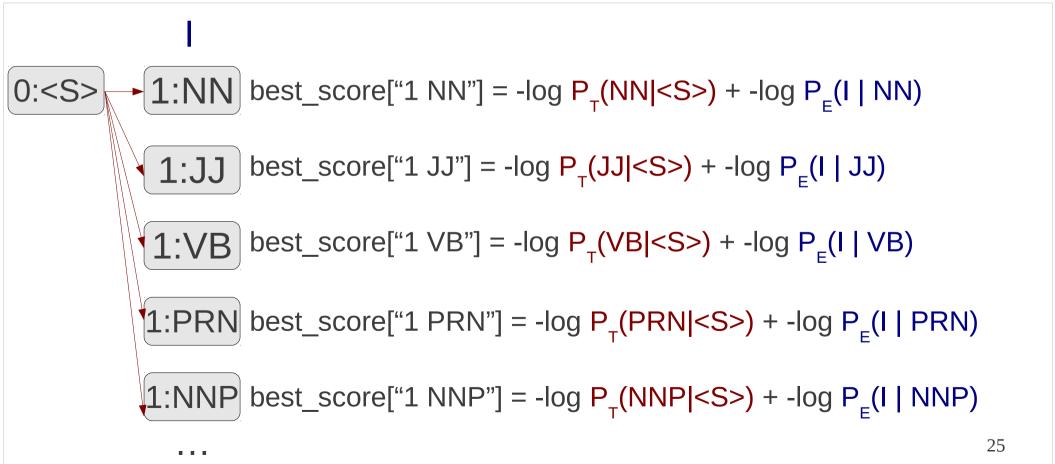
Remember: HMM Viterbi Algorithm

- Forward step, calculate the best path to a node
 - Find the path to each node with the lowest negative log probability
- Backward step, reproduce the path

• This is easy, almost the same as word segmentation

Forward Step: Part 1

 First, calculate transition from <S> and emission of the first word for every POS



Forward Step: Middle Parts

 For middle words, calculate the minimum score for all possible previous POS tags

The Structured Perceptron

So Far, We Have Learned

Classifiers

Perceptron

Lots of features

Binary prediction

Generative Models

HMM

Conditional probabilities

Structured prediction

Structured Perceptron

Classifiers

Perceptron

Lots of features

Binary prediction

Generative Models

HMM

Conditional probabilities

Structured prediction

Structured perceptron → Classification with lots of features over structured models!

Why are Features Good?

- Can easily try many different ideas
 - Are capital letters usually nouns?
 - Are words that end with -ed usually verbs? -ing?

Normal HMM: $P(X, Y) = \prod_{i=1}^{l} P_{E}(x_{i}|y_{i}) \prod_{i=1}^{l+1} P_{T}(y_{i}|y_{i-1})$

Normal HMM:
$$P(X,Y) = \prod_{i=1}^{\prime} P_{E}(x_{i}|y_{i}) \prod_{i=1}^{\prime+1} P_{T}(y_{i}|y_{i-1})$$

Log Likelihood: $\log P(X, Y) = \sum_{i=1}^{l} \log P_E(x_i | y_i) \sum_{i=1}^{l+1} \log P_T(y_i | y_{i-1})$

Normal HMM:
$$P(X,Y) = \prod_{i=1}^{\prime} P_{E}(x_{i}|y_{i}) \prod_{i=1}^{\prime+1} P_{T}(y_{i}|y_{i-1})$$

Log Likelihood: $\log P(X, Y) = \sum_{i=1}^{l} \log P_E(x_i | y_i) \sum_{i=1}^{l+1} \log P_T(y_i | y_{i-1})$

Score
$$S(X,Y) = \sum_{1}^{\prime} w_{E,y_{i},x_{i}} \sum_{i=1}^{\prime+1} w_{T,y_{i-1},y_{i-1}}$$

Normal HMM:
$$P(X, Y) = \prod_{i=1}^{l} P_{E}(x_{i}|y_{i}) \prod_{i=1}^{l+1} P_{T}(y_{i}|y_{i-1})$$

Log Likelihood:

$$\log P(X,Y) = \sum_{i=1}^{l} \log P_E(x_i|y_i) + \sum_{i=1}^{l+1} \log P_T(y_i|y_{i-1})$$
Score
$$S(X,Y) = \sum_{i=1}^{l} W_{E,y_i,x_i} + \sum_{i=1}^{l+1} W_{E,y_{i-1},y_i}$$

When: $\mathbf{W}_{E, y_i, x_i} = \log \mathbf{P}_E(\mathbf{x}_i | \mathbf{y}_i)$ $\mathbf{W}_{T, y_{i-1}, y_i} = \log \mathbf{P}_T(\mathbf{y}_i | \mathbf{y}_{i-1})$ $\log \mathbf{P}(X, Y) = S(X, Y)$

Example

$$\varphi(\begin{pmatrix} i & visited & Nara \\ \rightarrow PRN \rightarrow VBD \rightarrow NNP \rightarrow \end{pmatrix} =$$

$$\varphi_{T,~~,PRN}(X,Y_1) = 1 \quad \varphi_{T,PRN,VBD}(X,Y_1) = 1 \quad \varphi_{T,VBD,NNP}(X,Y_1) = 1 \quad \varphi_{T,NNP,}(X,Y_1) = 1~~$$

$$\varphi_{E,PRN,'''}(X,Y_1) = 1 \quad \varphi_{E,VBD,''visited''}(X,Y_1) = 1 \quad \varphi_{E,NNP,''Nara''}(X,Y_1) = 1$$

$$\varphi_{CAPS,PRN}(X,Y_1) = 1 \quad \varphi_{CAPS,NNP}(X,Y_1) = 1 \quad \varphi_{SUF,VBD,''...ed''}(X,Y_1) = 1$$

$$\varphi(\begin{pmatrix} i & visited & Nara \\ \rightarrow & A \end{pmatrix} =$$

$$\varphi_{T,~~,NNP}(X,Y_1) = 1 \quad \varphi_{T,NNP,VBD}(X,Y_1) = 1 \quad \varphi_{T,VBD,NNP}(X,Y_1) = 1 \quad \varphi_{T,NNP,}(X,Y_1) = 1~~$$

$$\varphi_{E,NNP,''}(X,Y_1) = 1 \quad \varphi_{E,VBD,''visited''}(X,Y_1) = 1 \quad \varphi_{E,NNP,''Nara''}(X,Y_1) = 1$$

$$\varphi_{CAPS,NNP}(X,Y_1) = 1 \quad \varphi_{E,VBD,''visited''}(X,Y_1) = 1 \quad \varphi_{SUF,VBD,''...ed''}(X,Y_1) = 1$$

$$\varphi_{SUF,VBD,''...ed''}(X,Y_1) = 1$$

$$35$$

Finding the Best Solution

• We must find the POS sequence that satisfies:

$$\hat{\mathbf{Y}} = \operatorname{argmax}_{\mathbf{Y}} \sum_{i} w_{i} \varphi_{i}(\mathbf{X}, \mathbf{Y})$$

HMM Viterbi with Features

• Same as probabilities, use feature weights

HMM Viterbi with Features

Can add additional features

Learning In the Structured Perceptron

- Remember the perceptron algorithm
- If there is a mistake:

$$w \leftarrow w + y \varphi(x)$$

- Update weights to: increase score of positive examples decrease score of negative examples
- What is positive/negative in structured perceptron?

Learning in the Structured Perceptron

• Positive example, correct feature vector:

• Negative example, incorrect feature vector:

Choosing an Incorrect Feature Vector

• There are too many incorrect feature vectors!

$$\varphi(\begin{array}{c} 1 & \text{visited} & \text{Nara} \\ \rightarrow & \text{NNP} \rightarrow & \text{VBD} \rightarrow & \text{NNP} \rightarrow \end{array}) \\ \varphi(\begin{array}{c} 1 & \text{visited} & \text{Nara} \\ \rightarrow & \text{PRN} \rightarrow & \text{VBD} \rightarrow & \text{NN} \rightarrow \end{array}) \\ \varphi(\begin{array}{c} 1 & \text{visited} & \text{Nara} \\ \rightarrow & \text{PRN} \rightarrow & \text{VBD} \rightarrow & \text{NN} \rightarrow \end{array}) \\ \varphi(\begin{array}{c} 1 & \text{visited} & \text{Nara} \\ \rightarrow & \text{PRN} \rightarrow & \text{VB} \rightarrow & \text{NNP} \rightarrow \end{array})$$

• Which do we use?

Choosing an Incorrect Feature Vector

• Answer: We update using the incorrect answer with the highest score:

$$\hat{\mathbf{Y}} = \operatorname{argmax}_{\mathbf{Y}} \sum_{i} w_{i} \varphi_{i}(\mathbf{X}, \mathbf{Y})$$

• Our update rule becomes:

$$w \leftarrow w + \varphi(X, Y') - \varphi(X, \hat{Y})$$

- (Y' is the correct answer)
- Note: If highest scoring answer is correct, no change

Sequential Data Modeling – The Structured Perceptron

Example

$$\begin{split} \phi_{\text{T,~~,PRN}}(X,Y_{1}) &= 1 \quad \phi_{\text{T,PRN,VBD}}(X,Y_{1}) = 1 \quad \phi_{\text{T,VBD,NNP}}(X,Y_{1}) = 1 \quad \phi_{\text{T,NNP,}}(X,Y_{1}) = 1 \\ \phi_{\text{E,PRN,""}}(X,Y_{1}) &= 1 \quad \phi_{\text{E,VBD,"visited"}}(X,Y_{1}) = 1 \quad \phi_{\text{E,NNP,"Nara"}}(X,Y_{1}) = 1 \\ \phi_{\text{CAPS,PRN}}(X,Y_{1}) &= 1 \quad \phi_{\text{CAPS,NNP}}(X,Y_{1}) = 1 \quad \phi_{\text{SUF,VBD,"...ed"}}(X,Y_{1}) = 1 \\ \phi_{\text{T,~~,NNP}}(X,Y_{1}) &= 1 \quad \phi_{\text{T,NNP,VBD}}(X,Y_{1}) = 1 \quad \phi_{\text{T,VBD,NNP}}(X,Y_{1}) = 1 \quad \phi_{\text{T,NNP,}}(X,Y_{1}) = 1 \\ \phi_{\text{E,NNP,""}}(X,Y_{1}) &= 1 \quad \phi_{\text{E,VBD,"visited"}}(X,Y_{1}) = 1 \quad \phi_{\text{E,NNP,"Nara"}}(X,Y_{1}) = 1 \\ \phi_{\text{CAPS,NNP}}(X,Y_{1}) &= 1 \quad \phi_{\text{E,VBD,"visited"}}(X,Y_{1}) = 1 \quad \phi_{\text{E,NP,"Nara"}}(X,Y_{1}) = 1 \\ \phi_{\text{CAPS,NNP}}(X,Y_{1}) &= 1 \quad \phi_{\text{E,VBD,"visited"}}(X,Y_{1}) = 1 \quad \phi_{\text{E,VBD,"usited"}}(X,Y_{1}) = 1 \\ \phi_{\text{CAPS,NNP}}(X,Y_{1}) &= 1 \quad \phi_{\text{T,PRN,VBD}}(X,Y_{1}) = 1 \\ &= \\ \hline \end{array}~~~~$$

$$\begin{aligned} & \phi_{T, ~~, PRN}(X, Y_{1}) = 1 & \phi_{T, PRN, VBD}(X, Y_{1}) = 1 \\ & \phi_{T, ~~, NNP}(X, Y_{1}) = -1 & \phi_{T, NNP, VBD}(X, Y_{1}) = -1 & \phi_{T, VBD, NNP}(X, Y_{1}) = 0 & \phi_{T, NNP, }(X, Y_{1}) = 0 \\ & \phi_{E, PRN, "I"}(X, Y_{1}) = 1 & \phi_{E, VBD, "visited"}(X, Y_{1}) = 0 & \phi_{E, NNP, "Nara"}(X, Y_{1}) = 0 \\ & \phi_{E, NNP, "I"}(X, Y_{1}) = -1 & \phi_{E, VBD, "visited"}(X, Y_{1}) = 0 & \phi_{E, NNP, "Nara"}(X, Y_{1}) = 0 \end{aligned}~~~~$$

$$43$$

Structured Perceptron Algorithm

create map w
for / iterations
 for each labeled pair X, Y_prime in the data
 Y_hat = HMM_VITERBI(W, X)
 phi_prime = CREATE_FEATURES(X, Y_prime)
 phi_hat = CREATE_FEATURES(X, Y_hat)
 w += phi_prime - phi_hat

Conclusion

- The structured perceptron is a discriminative structured prediction model
 - HMM: generative structured prediction
 - Perceptron: discriminative binary prediction
- It can be used for many problems
 - Prediction of

Thank You!