CS11-711 Advanced NLP

Multi-task, Multi-domain, and Multi-lingual Learning

Graham Neubig

Carnegie Mellon University
Language Technologies Institute

Site
https://phontron.com/class/anlp2022/
Multi-task Learning
(Caruana 1997)

- Train representations to do well on multiple tasks at once

Diagram:
- Input: "this is an example"
- Encoder
- Output: "LM" and "Tagging"
Applications of Multi-task Learning

- Perform multi-tasking when one of your two tasks has fewer data

- **Plain text → labeled text**
 (e.g. LM -> parser)

- **General domain → specific domain**
 (e.g. web text → medical text)

- **High-resourced language → low-resourced language**
 (e.g. English → Telugu)
Advanced Multi-tasking Methodology

• What parameters do we update and how?
• How do we sample/weight our different tasks?
Domain Adaptation
Domains in NLP

• One task, but incoming data could be from very different distributions

news text
medical text
spoken language

• Sometimes domains are labeled, sometimes they are not
What's in a "Domain"
(Stewart 2019)

• Mathematically, joint distribution over inputs and outputs differs over domains 1 and 2

\[P_{d_1}(X, Y) \neq P_{d_2}(X, Y) \]

• In practice:
 • **Content**, what is being discussed
 • **Style**, the way in which it is being discussed
 • **Labeling Standards**, the way that the same data is labeled
Types of Domain Shift

- **Covariate Shift**: The input changes but not the labeling

\[P_{d1}(X) \neq P_{d2}(X) \quad P_{d1}(Y|X) = P_{d2}(Y|X) \]

- **Concept Shift**: The conditional distribution of labels changes (e.g. different labeling standards)

\[P_{d1}(Y|X) \neq P_{d2}(Y|X) \]
Domain Adaptation

- Train on many domains, or a high-resourced domain

- Test on a low-resourced domain

- **Supervised** or **unsupervised** adaptation
Domain Robustness

- Train on many domains and do well on all of them

- Robustness to minority domains

- Zero-shot robustness to domains not in training data
Multilingual Learning
Similarity Across Languages

- Many languages share similar word roots

<table>
<thead>
<tr>
<th>Cognates (joint origin)</th>
<th>Loan Words (borrowed from another)</th>
</tr>
</thead>
<tbody>
<tr>
<td>English: night</td>
<td>Arabic: qahwa</td>
</tr>
<tr>
<td>French: nuit</td>
<td>Turkish: kahveh</td>
</tr>
<tr>
<td>Russian: noch</td>
<td>French: coffee</td>
</tr>
<tr>
<td>Bengali: nishi</td>
<td>Japanese: kohi</td>
</tr>
<tr>
<td></td>
<td>Chinese: kafei</td>
</tr>
</tbody>
</table>

Languages share a considerable amount of underlying structure, e.g. word order, grammar.

-he decided to buy two apples

他 决定 买 两 个 苹果
Multilingual Training

Now our best tool for applying methods to low-resourced languages.
Languages as Domains

- Multilingual learning is an extreme variety, different language = different domain

 - **Adaptation:** Improve accuracy on lower-resource languages by transferring knowledge from higher-resource languages

 - **Robustness:** Use one model for all languages, instead of one for each

- At the same time, much more complexity!
 - Requires modeling similarities/differences in lexicon, morphology, syntax, semantics, culture
Parameter Sharing Methods
How to Share Parameters?

• Share all parameters

 • e.g. single model for all domains

• Share some model components, not others

 • e.g. share encoder, separate decoder

• Very small number of unshared parameters

 • e.g. a single embedding specifying the domain
Full Parameter Sharing

• Ignore domain differences, just train a single model → Standard first step in multi-domain learning

• Also done multi-lingually

• Multilingual MT into English (Neubig and Hu 2018)

• Multi-lingual pre-trained LMs (Devlin et al. 2019, Wu and Dredze 2019)

• Cannot achieve ideal accuracy under concept shift
Simple Parameter Decoupling: Domain Tag

- Append a domain tag to input (Chu et al. 2017)

 `<news>` news text
 `<med>` medical text

- Translate into several languages by adding a tag about the target language (Johnson et al. 2017)

 `<fr>` this is an example → ceci est un exemple
 `<ja>` this is an example → これは例です

- Introduces a small number of parameters (=embedding size) for each domain
Minimal Parameter Decoupling Often Insufficient

- E.g. in multilingual learning

- In a fixed sized model, the per-language capacity decreases as we increase the number of languages

- Increasing the number of languages —> decrease in the quality of all language accuracy (Conneau et al. 2019)
Aggressive Parameter Decoupling

- E.g. in multilingual MT, one encoder or decoder per language (Firat et al. 2016)

- Problems:
 - Can't share when languages/domains are legitimately similar
 - Explosion in number of parameters
Minimal Parameter Decoupling

Example: Adapters

- Add a small layer per task to an already-trained model
- Transformer architecture example from Houlsby et al. (2019)
Regularization Methods for Adaptation (e.g. Barone et al. 2017)

- Pre-training relies on the fact that we won’t move too far from the initialized values

- We need some form of regularization to ensure this

- **Early stopping**: implicit regularization — stop when the model starts to overfit

- **Explicit regularization**: L2 on difference from initial parameters

\[
\theta_{\text{adapt}} = \theta_{\text{pre}} + \theta_{\text{diff}} \quad \ell(\theta_{\text{adapt}}) = \sum_{\langle X, Y \rangle \in \mathcal{X}, \mathcal{Y}} -\log P(Y | X; \theta_{\text{adapt}}) + ||\theta_{\text{diff}}||
\]

- **Dropout**: Also implicit regularization, works pretty well
Soft Parameter Tying for Multi-task Learning

- It is also possible to share parameters loosely between various tasks
- Parameters are regularized to be closer, but not tied in a hard fashion (e.g. Duong et al. 2015)
Selective Parameter Adaptation

• Sometimes best to adapt subset of parameters
• e.g. cross-lingual transfer for neural MT (Zoph et al. 2016)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Dev BLEU</th>
<th>Dev PPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>No retraining</td>
<td>0.0</td>
<td>112.6</td>
</tr>
<tr>
<td>Retrain source embeddings</td>
<td>7.7</td>
<td>24.7</td>
</tr>
<tr>
<td>+ source RNN</td>
<td>11.8</td>
<td>17.0</td>
</tr>
<tr>
<td>+ target RNN</td>
<td>14.2</td>
<td>14.5</td>
</tr>
<tr>
<td>+ target attention</td>
<td>15.0</td>
<td>13.9</td>
</tr>
<tr>
<td>+ target input embeddings</td>
<td>14.7</td>
<td>13.8</td>
</tr>
<tr>
<td>+ target output embeddings</td>
<td>13.7</td>
<td>14.4</td>
</tr>
</tbody>
</table>

• Share sub-networks of the Transformer (Sachan and Neubig 2018)
Feature Space Regularization

- Try to regularize the features spaces learned to be closer to each other (e.g. Ganin et al. 2016)
Task Weighting
Handling Different Tasks in Learning

• *How much* to learn on each task?

 • **Task Weighting:** Differently weight loss functions from different tasks

 • **Task Sampling:** Similar to weighting, modify sampling proportion

• *When* to learn on each task?

 • **Curriculum Learning:** Choose the ordering of tasks
Simple Task Weighting Strategies

- **Uniform**: Sample/weight all tasks with equal probability
- **Proportional**: Sample/weight tasks according to data size
- **Temperature-based**: Sample tasks according to data size exponentiated by $1/\tau$ (Arivazhagan et al. 2019)
Data-driven Task Weighting

- **Loss Scaling**: Scale the loss according to variance w/ regularizer (Kendall et al. 2018)

\[
\mathcal{L}_{\text{total}} = \sum_u \frac{\mathcal{L}_i}{2\sigma_i} + \log \sigma_i
\]

- **Task Weight Optimization**: Optimize weights of each task to improve accuracy on a development set (e.g. Dery et al. 2021)

- upweight tasks w/ similar gradients
- downweight tasks w/ divergent gradients
Choosing Transfer Tasks

• We have many tasks that we could be choosing from!

• **Intuitive selection:** more similar task benefit more

• **Empirical selection:** run many transfer experiments and deduce rules

• Choosing transfer languages (Lin et al. 2019)

• Multi-task learning on one language (Vu et al. 2020)
Distributionally Robust Optimization

• We'd like to find a model that does well over multiple domains

• **Distributionally robust optimization** optimizes the *worst-case* loss (loss on the worst task)

\[
\mathcal{L} = \arg\min_{\theta} \max_{\tilde{L}} \tilde{L}(\theta)
\]

• NLP applications to LM across domains (Oren et al. 2019) and MT across languages (Zhou et al. 2021)
Inherently Multilingual Considerations
Handling Different Scripts

• Use phonological representations to make the similarity between languages apparent.

• E.g. Rijhwani et al (2019) link between entities in different languages in pronunciation space.

edia: Rijhwani et al (2019) link between entities in different languages in pronunciation space.
Using Parallel Data

- Often we have translations in multiple languages.
- Annotation projection: induce annotations in the target language using parallel data or bilingual dictionary (Yarowsky et al, 2001).

<table>
<thead>
<tr>
<th>Tagger Output</th>
<th>DT</th>
<th>NNS</th>
<th>VBG</th>
<th>NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td></td>
<td>The laws ...</td>
<td></td>
<td>... living room ...</td>
</tr>
<tr>
<td>French</td>
<td></td>
<td>Les lois ...</td>
<td>Ø</td>
<td>... salon ...</td>
</tr>
<tr>
<td>Induced Tags</td>
<td>DT</td>
<td>NNS</td>
<td></td>
<td>NN</td>
</tr>
</tbody>
</table>
Multilingual Structured Prediction/ Multilingual Outputs

- Things are harder when predicting a sequence of actions (parsing) or words (MT) in different languages

- One simple method: add embedding of the expected output to your model (e.g. Tsvetkov et al. 2016)

- Other methods incorporate more explicit constraints on syntax, etc. (e.g. Meng et al. 2019)
Questions?