CS11-747 Neural Networks for NLP Advanced Sequence-tosequence Models

Graham Neubig

Carnegie Mellon University

Language Technologies Institute

Site <u>https://phontron.com/class/nn4nlp2021/</u>

Slides by Pengfei Liu

Remember: Masked Language Model

- Encoder-only pre-trained model
- Not suitable for conditional generation

How to design a pretrained model that can adapt to conditional generation?

Seq2seq Pretraining and Beyond

Masked language model

Encoder-decoder

y2

y2

Prefixed LM

BERT

x1 x2 хЗ y1 MASS/T5/BAR

- Model: RNN-based Encoder-decoder, no selfattention
- Objective: language model
 - Encoder & decoder are pre-trained by two language models
- Data: Task-specific

- Model: Transformer-based Encoder-decoder
- Objective: *only* predict masked spans
- Data: WebText

- Model: Transformer-based encoder-decoder model
- Objective: Re-construct (corrupted) original sentences
- Data: similar to RoBERTa (160GB): BookCorpus, CC-NEWs, WebText, Stories

mBART(Liu et al.)

- Model: Transformer-based *Multi-lingual Denoising* auto-encode
- Objective: Re-construct (corrupted) original sentences
- Data: CC25 Corpus (25 langauges)

Seq2seq v.s Masked LM

- Regarding generation tasks:
 - Seq2seq (BART) could significantly outperform masked LM (BERT)

~ 2.0 ROUGE-1 is a fairly large performance gap

Seq2seq v.s Masked LM

- Regarding nongeneration tasks:
 - Seq2seq (BART) could achieve comparable or even better performance than masked LM (BERT)

	SQuAD 1.1 EM/F1	SQuAD 2.0 EM/F1	MNLI m/mm	SST Acc	QQP Acc	QNLI Acc	STS-B Acc	RTE Acc	MRPC Acc	CoLA Mcc
BERT	84.1/90.9	79.0/81.8	86.6/-	93.2	91.3	92.3	90.0	70.4	88.0	60.6
UniLM	-/-	80.5/83.4	87.0/85.9	94.5	-	92.7	-	70.9	-	61.1
XLNet	89.0 /94.5	86.1/88.8	89.8/-	95.6	91.8	93.9	91.8	83.8	89.2	63.6
RoBERTa	88.9/ 94.6	86.5/89.4	90.2/90.2	96.4	92.2	94.7	92.4	86.6	90.9	68.0
BART	88.8/ 94.6	86.1/89.2	89.9/90.1	96.6	92.5	94.9	91.2	87.0	90.4	62.8

Prefixed Language Model

- Encoder and decoder are put in the same Transformer by using
 - Fully-connected self-attention
 - Left-to-right selfattention

UNILM (Dong et al.)

- Model: prefixed-LM, left-to-right LM, Masked LM
- Objective: three types of LMs, *shared* parameters
- Data: English Wikipedia and BookCorpus

T5 (Raffel et al.)

- Model: left-to-right LM, Prefixed LM, encode-decoder
- Objective: explore different cases respectively
- Data: C4 (750G) + Wikipedia + RealNews + WebText

T5 (Raffel et al.)

Objective	Inputs	Targets
Prefix language modeling BERT-style Devlin et al. (2018) Deshuffling MASS-style Song et al. (2019) I.i.d. noise, replace spans I.i.d. noise, drop tokens	Thank you for inviting Thank you <m> <m> me to your party apple week . party me for your to . last fun you inviting week Thank Thank you <m> <m> me to your party <m> week . Thank you <x> me to your party <y> week . Thank you me to your party week .</y></x></m></m></m></m></m>	<pre>me to your party last week . (original text) (original text) (original text) <x> for inviting <y> last <z> for inviting last</z></y></x></pre>
Random spans	Thank you $<\!\!x\!\!>$ to $<\!\!Y\!\!>$ week .	$<\!\!x\!\!>$ for inviting me $<\!\!y\!\!>$ your party last $<\!\!z\!\!>$

- Model: left-to-right LM, Prefix LM, encode-decoder
- Objective: explore different cases respectively
- Data: C4 (750G) + Wikipedia + RealNews + WebText

Seq2seq v.s Prefixed LM

- Architecture
 - Seq2seq: different parameters for encoder & decoder
 - Prefixed LM: same parameters for prefix and continuation.

Seq2seq

Prefixed LM

Seq2seq v.s Prefixed LM

Seq2seq Pretraining and Beyond

Encoder-decoder

Prefixed LM

UNILM/T5

?

Seq2seq Pretraining and Beyond

Encoder-decoder

Prefixed LM

Left-to-right LM

UNILM/T5

GPT3 (Brown et al.)

- Model: like GPT2 (left-to-right, task prompt)
- Objective: left-to-right language model
- Data: Common Crawl + WebText + Books1,2 + Wikipedia

GPT3 (Brown et al.)

- Left-to-right language model is all you need:
 - with the help of "prompt", many NLP tasks could be formulated as a language model problem.

Example

Translate into

English

"Brevet Sans Garantie Du Gouvernement"

Example

Prompt

Real Examples

GPT3 Authors a Python Function

Image credit: https://www.buildgpt3.com/

Q: What is human life expectancy in the United States?A: Human life expectancy in the United States is 78 years.Q: Who was president of the United States in 1955?A: Dwight D. Eisenhower was president of the United States in 1955.

Q: What party did he belong to?A: He belonged to the Republican Party.

Q: Who was president of the United States before George W. Bush? A: Bill Clinton was president of the United States before George W. Bush.

Q: Who won the World Series in 1995?A: The Atlanta Braves won the World Series in 1995.

Test

Q: What is your favorite animal? A: My favorite animal is a dog.

Q: Why? A: Because dogs are loyal and friendly.

Q: What are two reasons that a dog might be in a bad mood?A: Two reasons that a dog might be in a bad mood are if it is hungry or if it is hot.

Q: How many eyes does a giraffe have? A: A giraffe has two eyes.

Q: How many legs does a frog have? A: A frog has four legs.

Q: Are there any animals with three legs?A: No, there are no animals with three legs.

Q: Why don't animals have three legs?

A: Animals don't have three legs because they would fall over.

Example credit: https://lacker.io/ai/2020/07/06/giving-gpt-3-a-turing-test.html

Promp t

A Unified view for Pretrained Models

Encoder-decoder

Prefixed LM

Left-to-right LM

A Unified view for Pretrained Models

		X		Y			
	Attention Mask	Corruption	Prediction objective	Attention Mask	Corruption	Prediction objective	
Masked LM	Fully- connected	Mask token/spa n	Some words	_	_	_	
Left-to- right LM	Autoregressiv e	none	All words	Autoregre ssive	none	All words	
Prefix LM	Fully- connected	Mask token/spa n	Some words	Autoregre ssive	none	All words	
Encoder- decoder	Fully- connected	Mask, drop, replace	No words	Autoregre ssive	none	All words	

• Choose an appropriate one

 Suitability: Data, loss of pre-train models <-> domain, characteristics of your tasks

• Choose an appropriate one

 Suitability: Data, loss of pre-train models <-> domain, characteristics of your tasks

Empirically

- Commonly, larger versions could do better.
- RoBERTa > BERT on many NLP tasks, but when designing a metric (BERTScore), BERT does better
- BART >> BERT on text generation tasks.
- GPT2 is suitable for unconditional text generation tasks.
- GPT3 does better on few-shot/zero-shot scenario.

Choose an appropriate one

- Suitability: Data, loss of pre-train models <-> domain, characteristics of your tasks
- Economy: different versions (base, large, huge) -> based on your computational resource
 - lighter version first
 - If the pre-trained model is too large to store for GPUs,
 - Think about distilled version
 - Think about data or model parallel

- When you're using them, think about
 - How are their data pre-processing methods?
 - Case sensitive/tokenize
 - Do you want to fine-tune or freeze them?
 - If fine-tuning, which types of fine-tuning methods you want to adopt?
 - Gradual unfreezing (Howard et al. 2018); Prefix-tuning (Li et al. 2021); P-tuning (Liu et al. 2021)
 - If your interested pre-trained model (say M) has already been finetuned by other relevant tasks (say M')?
 - If yes, you probably can use M' directly

- Data Contamination
 - whether test samples have already been seen during the pre-training stage

- Data Contamination
- Data Privacy
 - Pre-training data can be recovered from pretraining samples (Carlini et al. 2020)

- Data Contamination
- Data Privacy
- Downstream task specific pre-training
 - Data perspective

"pre-training on in-domain unlabeled data can improve performance on downstream tasks" (from T5)

- Data Contamination
- Data Privacy
- Downstream task specific pre-training
 - Data perspective
 - Loss function perspective
 - PEGASUS (Zhang et al. 2019): Summarization-specific Pre-training Models
 - RefBERT (Varkel et al. 2020): Corefence-specific Pre-training Models

- Data Contamination
- Data Privacy
- Downstream task specific pre-training
- How do we use it
 - Fine-tune or not?

- Data Contamination
- Data Privacy
- Downstream task specific pre-training
- How do we use it?
- Is it true that "large pre-trained model is all we need"?

