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SUMMARY In this work, we propose a new statistical model for build-
ing robust dialog systems using neural networks to either retrieve or gen-
erate dialog response based on an existing data sources. In the retrieval
task, we propose an approach that uses paraphrase identification during the
retrieval process. This is done by employing recursive autoencoders and
dynamic pooling to determine whether two sentences with arbitrary length
have the same meaning. For both the generation and retrieval tasks, we pro-
pose a model using long short term memory (LSTM) neural networks that
works by first using an LSTM encoder to read in the user’s utterance into
a continuous vector-space representation, then using an LSTM decoder to
generate the most probable word sequence. An evaluation based on objec-
tive and subjective metrics shows that the new proposed approaches have
the ability to deal with user inputs that are not well covered in the database
compared to standard example-based dialog baselines.
key words: example-based dialog system, dialog system, response re-
trieval, response generation, long short term memory neural network

1. Introduction

Natural language dialogue systems promise to establish ef-
ficient interfaces for communication between humans and
computers [1]–[5]. One way to create a simple yet effec-
tive dialog system is using example-based dialog modeling
(EBDM) [6]–[9]. EBDM is a data-driven approach for cre-
ating dialog systems that choose how to respond to user
input based on a large database of examples consisting of
an utterance, and a corresponding natural reply to that ut-
terance. Given a user input, the system then performs re-
sponse retrieval, selecting the highest scoring response from
the existing utterances in the database. EBDM presents a
lightweight alternative to more conventional methods for
constructing dialog systems, as it only requires the construc-
tion of an example base, and has also been shown effective
in a number of dialog scenarios. In particular, this approach
is able to generate highly natural output when an exam-
ple that matches closely with the user query is included in
the database and the example is appropriately retrieved [6]–
[8], [10]–[13].
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However, dealing with sparse human language and a
finite query-response database, we can imagine easily that
such system may fail when attempting to respond to a user
utterance that does not match closely with one of the exam-
ples in the database. We define this kind of problem as an
out of example (OOE) problem. One way to overcome this
problem is using response generation. This approach uses
the dialog examples as data to train a model that can gener-
ate responses not included in the database. Generation has
the potential to be more robust to OOE user inputs, but also
may generate responses that are incomprehensible to human
users [13]. Generation models originally adapted statistical
machine translation (SMT) to utilize a query-response di-
alog database as a parallel corpus to “translate” between
query input and response output [9], [14]. In the recent
developments, there have also been several alternative ap-
proaches developed simultaneously to this work that utilize
neural networks for dialog generation [15]–[17].

In this work, we propose and compare methods for us-
ing neural networks for both dialog response retrieval and
generation. The reason why we focus on neural networks
specifically is that in dialog tasks, we are dealing with a ten-
uous and indirect relationship between a dialog utterance
and responses [9]. Continuous distributed representations
used by neural networks have proven useful for expressing
these sorts of soft relationships in natural language [18], and
thus may be more able to accommodate such soft associa-
tions.

Particularly, we make several contributions∗:

• We propose a new EBDM method to retrieve dia-
log responses from the database by utilizing a neural-
network based paraphrase matching algorithm. In this
approach, we model the example in our dialog-pair
database and the user input query with distributed word
representations, and employ recursive autoencoders
and dynamic pooling to determine whether two sen-
tences with arbitrary length have the same meaning.
• We propose a method that utilizes LSTM neural net-

works to perform response retrieval, in addition to gen-
erating responses directly. Given the LSTM response
generation model, we calculate the perplexity of each
response in the database conditioned on the user query,

∗Part of this work on neural-network based paraphrase match-
ing have been published [19]. This paper add to the previous works
by proposing a dialog system that utilize LSTM neural network
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and obtain the best-scoring response candidate directly
from the dialog database. This way we can reduce the
chance of grammatical errors that occur when generat-
ing dialog responses, while using the ability of neural
networks to perform soft matching to improve retrieval
accuracy.
• We perform an analysis and contrastive experiment to

compare our proposed approach with the state-of-the-
art baseline approaches in data-driven chat-oriented di-
alog. We evaluate using both automatic and manual
evaluation, over examples that are well covered by the
example base, as well as examples for which a close
match does not exist.

2. Related Works

Earlier efforts to incorporate a data-driven approach into di-
alog systems rely on two main approaches. The first is
response retrieval approaches that search for the most ap-
propriate response in a conversation database [6]–[8], [10],
[11], [13], [19]. However, in the case that no response in the
database could adequately respond to a given utterance, this
approach will fail. Response generation [15]–[17] which
has the ability to generate a new responses, is arguably ro-
bust in handling user input comparing to the other approach,
however this approach sometimes generates unnatural re-
sponses that are incomprehensible to the user [9].

There have been a number of works on response gener-
ation for data-driven dialog systems. The first work in data-
driven response generation utilized a statistical machine
translation system to learning a patterns between queries
and response in conversational data [9]. On the other hand,
many recent works focus on models based on recurrent neu-
ral network language models (RNNLM) [20]. Sordoni et
al. [15] employ an RNN architecture to generate responses
from a social media corpus, and Vinyals et al. [16] present a
long short-term memory (LSTM) neural network encoder-
decoders to generate dialog responses using movie subti-
tles or IT support line chats. More recently Wen et al. [17]
demonstrate a more advanced LSTM that able to control a
response semantically by considering dialogue act feature.

Our LSTM response generation approach (which we
developed simultaneously to earlier efforts) is similar, but
also can be used to perform response retrieval. We hope
that this will reduce our chance of grammatical errors that
occur when generating a dialog response. Furthermore, our
works include a contrastive experiment, comparing the new
approaches to baseline methods in a data-driven dialog sys-
tem.

3. Baseline Response Retrieval and Generation

In response retrieval and generation, we take user utter-
ance Q as an input and choose a response R′, which is ob-
tained from the query-response dialog pairs in the database
⟨Q′,R′⟩ ∈ D. Methods to obtain response R′ can be clas-
sified as (1) retrieval and (2) generation. Though different,

these techniques both can be viewed as a scoring problem
where we try to assign score S (Q,R′) that measures the ap-
propriateness of response candidate R′ given user utterance
Q. In response retrieval, we find the R′ with the highest
score out of all the examples in the database D:

R̂ = argmax
R′∈D

S (Q,R′). (1)

On the other hand, response generation finds hypothesis R ≈
R′ with the highest score out of all the possible sentence
hypotheses R:

R̂ = argmax
R∈R

S (Q,R). (2)

There are many ways to retrieve or generate responses
in EBDM systems. In this work, we implement (1)
similarity-based retrieval [10], [11] as our baseline response
retrieval approach, and (2) phrase-based statistical machine
translation (SMT response generation) [9] as our baseline
response generation approach.

3.1 Similarity-Based Retrieval

Our first baseline, cosine similarity-based retrieval (csm),
works by matching the user query input Q and all the possi-
ble queries Q′ from the query-response pairs ⟨Q′,R′⟩ in the
dialog database. This method returns response R′ that cor-
responded to the highest scoring Q′. In these models, we
define a score S (Q,Q′) measuring similarity between user
and database queries, and assume that S (Q,R′) ≈ S (Q,Q′).
We define S (Q,Q′) as TF-IDF based cosine similarity. TF-
IDF based cosine similarity calculates cosine similarity over
the TF-IDF weighted term vector of two sentences, S 1 and
S 2 [10]

cos(S 1, S 2) =
S 1 · S 2

∥ S 1 ∥ ∥ S 2 ∥
(3)

To calculate term vector S from query Q, we first create
a vector consisting of the frequency of all word in S , then
weight each word with its TF-IDF value [21], a measure of
term importance widely used in information retrieval.

3.2 SMT Response Generation

Next, in the SMT response generation (smt) approach, we
treat dialog-pair data ⟨Q′,R′⟩ as a parallel corpus for train-
ing an SMT system. Given the trained SMT system, the user
dialog is treated as an input and “translated” into the system
response. The system response is chosen to be system out-
put R̂ of maximal probability given the user input Q

R̂ = argmax
R∈R

P(R | Q), (4)

where P(R | Q) is a probability distribution of candidate
response R given the user input Q.

4. RAE Paraphrase-Based Retrieval

Simple methods such as cosine similarity have problems
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Fig. 1 Overview of neural-network-based retrieval.

with robustness [19]. Thus we need a more sophisticated
approach to retrieve a response from the example database.
In this section, we describe our proposed method to use
neural network-based retrieval to retrieve more appropriate
responses from the example database. In this method, a
proper system response is retrieved by modeling the exam-
ple database using neural word representations, and pass-
ing it to the softmax classifier that calculates a probability
that the user input Q and query in the example database
Q′ are paraphrases. Thus we can view the scoring function
S (Q,Q′) as being this paraphrase probability.

Adopting the work of [22], we utilize recursive autoen-
coders (RAE), dynamic pooling, and a softmax classifier to
decide whether the sentence is paraphrased or not. In the fol-
lowing sections we describe: (1) word representations, the
input to the RAE, (2) recursive autoencoders, and (3) dy-
namic pooling and paraphrase classification. An overview
of the neural-network-based retrieval method is depicted in
Fig. 1.

4.1 Word Representations

A distributed word representation is an n-dimensional vec-
tor of continuous values used to represent a word i in the
vocabulary D (i ∈ D). They are often obtained by joint
learning of neural network language models and distributed
representation for words [23]. The reason why word repre-
sentations are useful is that they allow for soft matching of
similar words when exact matches are not available. This
is useful especially when we are dealing with the large vo-
cabularies. Without soft matching, the response generator
has a tendency to fail and respond to the user input with an-
other uncorrelated response based on superficial overlap of
the words that do happen to have an exact match.

4.2 Recursive Autoencoder

The RAE algorithm is used to combine word representa-
tions into vector representations of longer phrases in a syn-
tactic parse tree. The aim of using the syntactic parse tree
is to capture the compositionality of meaning that is natu-
rally constrained by the tree. In order to construct the vector

representation, this algorithm requires word representations
and a binary syntactic tree as input [19].

The benefit of recursive autoencoder is that they can
capture the compositional structure of phrases, and their
similarity the two given sentences. For example, a sentence
“tons of stuff to throw away” and “a lot of junk to dispose”
there are relationship between words and phrases such as
“tons of stuff” with “a lot” and “throw away” with “dis-
pose”. Using the recursive autoencoder, we can not only
capture the word paraphrase similarity, but also the phrase
similarity.

4.3 Dynamic Pooling and Paraphrase Classification

Given the RAE-derived representation of the sentence, we
would like to calculate the similarity of two sentences. To
deal with the arbitrary length of the sentence, RAE word
representations are normalized into a fixed length vector
with an algorithm called dynamic pooling. Every sentence
fed into the RAE forms a binary tree representation. Given
this, we can define a matrix M, where the rows and columns
in this matrix represent two sentences with the different
lengths i and j. Because this matrix includes all the non-
terminal nodes and leaves in the binary tree, the matrix M’s
size is 2i − 1 × 2 j − 1.

The dynamic pooling algorithm takes a matrix M as an
input and turns it into matrix M′ with the fixed size n × n.
This algorithm will divide the matrix M into n roughly equal
parts. Every minimal value in the rectangular window is
selected to form a n × n grid.

Given this n×n grid, we then classify each utterance as
similar or not using a softmax classifier layer. The softmax
classifier takes the matrix M′ as an input, and outputs a con-
fidence score that decided whether a user input and dialog
database is a paraphrase.

5. LSTM Response Retrieval and Generation

In this section, we explain about response generation and
retrieval methods using LSTM recurrent neural networks.
LSTMs have shown impressive ability to capture syntac-
tic and semantic information of sentences in other applica-
tions [24]–[26], and it is reasonable that this will carry over
to dialog as well.

5.1 Long Short Term Memory Model

We can view each query Q and response R′ dialog pair as
a set of a words (q1, . . . , qI) and (r′1, . . . , r

′
I′ ). By doing so,

we can formulate a conditional probability of the response
given the query as P(R′|Q) = P(r′1, . . . , r

′
I′ |q1, . . . , qI).

Before the LSTM takes a word from the input sentence,
we transform each word into a distributed word representa-
tion. A distributed word representation is an n-dimensional
vector of continuous values used to represent a word in the
vocabulary [18], [23]. Each word in the dictionary (w ∈ W)
is embedded into n-dimensional space L ∈ Rn×|W |. From this
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Fig. 2 LSTM neural model over time.

representation, a word vector can be seen as a single vector
in the column L.

Each LSTM layer is composed of input gates i, forget
gates f , output gates o, and memory cells c. Mathematically
this can be viewed as:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi), (5)

ft = σ(Wxixt +Whiht−1 +Wcict−1 + b f ), (6)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc), (7)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo), (8)

ht = ot tanh(ct), (9)

where xt is an input to the LSTM, in our case a single dis-
tributed word vector L of word w, σ is a logistic sigmoid
function, and h is a hidden vector. The weight W and b sub-
script respectively represent the edge connection matrix and
bias vector. For example Wxc indicates the input-cell (xc)
weight matrix. To calculate input gates i we apply the logis-
tic sigmoid over the sum of dot products of (1) input weight
matrix Wxi and word input xt, (2) hidden-input weight ma-
trix Whi and the previous hidden vector ht−1, (3) cell-input
weight matrix Wci and previous memory cell ct−1, and (4)
input bias vector bi.

At the end of each LSTM, we calculate the output prob-
ability by performing an affine transform on the LSTM out-
put ht, and calculating the probability with the softmax func-
tion:

P(r′t+1|h) = so f tmax(Whyht + b), (10)

where Why is a hidden-output weight matrix, and b is a bias.
Our model consists of an LSTM encoder-decoder with

two LSTMs, one for the query sequence and another for the
response sequence. The details of how the LSTM works
can be seen in the Fig. 2. Given the query (q1, . . . , qI) the
network will predict a response (r′1, . . . , r

′
I′) as the output.

Note that the system starts to decode the output after reading
the input and receiving the end of sentence symbol “<S>”.

The conditional probability of the next word in the re-
sponse sentence is calculated conditioned on a hidden rep-
resentation h and memory cell that encodes the input query
q1, . . . , qI , and the previously generated words of the re-
sponse sequence

P(r′1, . . . , r
′
I′ |q1, . . . , qI) =

I′∏

i=1

P(r′i |h). (11)

We also experiment with deep LSTMs that stack mem-
ory cells one after another. During training we utilize back
propagation through time [27] to calculate the gradient over
the full sequence, minimizing the negative log likelihood us-
ing stochastic gradient descent. Using the development data,
we calculate the LSTM loss function, and decrease the net-
work learning rate by half when there is no improvement
over time. The learning is terminated when the learning rate
is lower than a threshold.

5.2 LSTM Response Generation

As explained above, to encode the input sentence, we feed it
word by word (q1, . . . , qI) to the LSTM model. By following
the word probability P(r′|h) from Eq. (11), we calculate the
word with the highest probability as follows:

R̂ =
∑

argmax
r′∈R

P(r′|h). (12)

After encoding the target sentence, the LSTM decoder
is used to generate output word by word. We search for the
most likely response by using a left-to-right beam search
decoder which maintains a small amount number h of par-
tial hypotheses at each time step, and discard the rest [25].
When we reach a symbol “<S>” and append it to the
highest-scoring hypothesis, we end the search.

5.3 LSTM Response Retrieval

Different from the LSTM response generation, in LSTM
response retrieval we calculate P(R′|Q) for every response
candidate R′ in the dialog database based on its conditional
probability log P(R′|Q) divided by the number of words |R′|.

R̂ = argmax
R′∈D

log P(R′|Q)
|R′| . (13)

This score tells us how likely a response candidate is to be
an output response, given the user utterance sentence and
the LSTM model. We use this score to retrieve the highest
scoring response from the dialog database.

6. Construction of Dialog Corpora

The dialogue corpora that we constructed in this study is
based on dialog-pair sentences that have been extracted from
movie script. Our method to construct a dialog corpus can
be briefly explained as three main steps: (1) preprocessing,
which removes unnecessary information and normalizes the
text, (2) dialog pair extraction, which ensures that the con-
versation is between two people talking with each other, and
(3) semantic similarity calculation, which ensures that the
each query-response pair is semantically related. We de-
scribe each step briefly in the following sections. More dis-
cussion about data collection, processing, and the advantage
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Fig. 3 Example of a tri-turn with two actors.

of using tri-turn filtering can be obtained in [10].

6.1 Data Collection and Preprocessing

We collect the data by creating a script to automatically
download web pages that contain a movie script. Prepro-
cessing of the movie scripts is done by transforming raw
HTML files into easily readable text format. Since we use
a variety of sources of movie scripts that had various for-
mats, we implemented several parsing algorithms to fetch
the information from the raw movie conversation. Further-
more, unnecessary explanatory information about the movie
scenes is also removed.

6.2 Dialog Turn Extraction

To ensure that the dialog example database contains only
query-response pairs, we propose a simple and intuitive
method for selection of the dialog data: trigram turn se-
quences, or tri-turns. A tri-turn is defined as three turns in
a conversation between two actors A and B that has the pat-
tern A-B-A. In other words, within a tri-turn the first and last
dialog turn are performed by the same actor and the second
dialog turn is performed by the other actor.

We found that when we observed this pattern, in the
great majority of the cases this indicated that the first and
second utterances, as well as the second and third utterances,
formed a proper input-response pair as shown in the C-A-C
tri-turn in Fig. 3. However, noisy cases which contain un-
correlated turns still exist (see the B-A-B tri-turn in Fig. 3),
this happens because the speakers are not actually speaking
to each-other. To address this problem, we perform further
filtering using the semantic similarity measure described in
the following section.

6.3 Semantic Similarity

Semantic similarity [28], shown in Eq. (14), is used to en-
sure a strong semantic relationship between each dialog turn
in the dialog-pair data, by computing the similarity between
WordNet† synsets in each dialog turn. The dialog pairs
with high similarity are then extracted and included into
database.

†http://wordnet.princeton.edu/

semsim(S 1, S 2) =
2 × |S syn1 ∩ S syn2|
|S syn1| + |S syn2|

(14)

7. Experimental Setup

7.1 Data Preparation

As data for our experiments, we use movie script data col-
lected from Friends TV show scripts††, The Internet Movie
Script Database†††, and The Daily Script††††. In total we
gather 1,786 movie scripts, and extract 1,042,288 dialog pair
candidates. In the end, we use 10,033 dialog pairs and sepa-
rate them into 9,033 dialog pairs for training data and 1,000
dialog pairs for testing data.

As mentioned in the introduction, the effectiveness of
example-based dialog largely depends on whether a close
example exists in the database. To examine how well each
method works when a close example exists or doesn’t exist,
we further divide the test dialog pair data into two cases [19]:

1 Close example found (CEF) - (587 examples): A given
user query is available or there exists a close example
in the dialog database. This happens when baseline csm
retrieval score is more than a threshold 0.7 [19].

2 Out of example (OOE) - (413 examples): The rest of
the queries under the threshold.

7.2 Paraphrased-Based Retrieval Setup

In our experiment, we use the RAE trained with 150,000
sentences from NYT and AP section of the Gigaword corpus
provided by Socher et al. [22]. To generate all the parse
trees for the RAE algorithm, we use the Stanford parser [29].
We also employ the 100-dimensional word representations
computed and provided by Turian et al. [30].

To provide a balanced amount of similar and not sim-
ilar queries during training, we do the cross product all
training dialogues (9,033 pairs) with each other and cal-
culate the syntactic-semantic similarity [10] sim(S 1, S 2) =
α[semsim(S 1, S 2)]+(1−α)[cossim(S 1, S 2)]. We assume that a
similar query is obtained when the syntactic-semantic score
is exclusively between 0.7 and 0.9, and a non-similar query
is obtained when the syntactic-semantic score is exclusively
between 0.2 and 0.4†††††. In the end, we obtained 1,421,338
pairs of training data with the ratio between similar and non-
similar sentences being 50:50.

7.3 LSTM Network Setup

In order to train our LSTM network, we separate our dia-
††http://ufwebsite.tripod.com/scripts/scripts.htm
†††http://imsdb.com/
††††http://dailyscript.com/
†††††Note that it would be better to manually create a corpus of

similar and non-similar utterances, but this is extremely time con-
suming, so we take the more light-weight automatic approach in
this paper.
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Fig. 4 LSTM model perplexity.

log pair training data into 7,227 and 1,806 examples† for
training and development sets. During training, we used the
training set to learn the parameters, and development set as
a criterion to evaluate the network performance and decide
whether to continue training or not.

Before evaluating the LSTM-based methods on actual
dialog performance, we first evaluate the perplexity of the
model on the development set for various numbers of nodes
in the hidden layers (100, 200, 300), and various numbers
of hidden layers (1-7).

The perplexity results of the network training can be
seen in Fig. 4. The best performance of the various set-
tings is achieved by the 1 layer LSTM with 300 nodes in
the hidden layer, with a perplexity score of 38.73. We use
this network in our dialog-based evaluation in the following
sections.

8. Evaluation

In this work, we evaluate the system responses objectively
by calculating the system output response R̂ similarity with
the expected output R, and subjectively by performing a
questionnaire with actual users.

8.1 Objective Evaluation

In the objective evaluation, we calculate the similarity be-
tween the system response R̂ and the expected output R with
(1) TF-IDF cosine similarity, which focuses on content word
similarity, and (2) BLEU-4, which focues on fluency and lo-
cal word order [31]. We compare our baseline retrieval sys-
tems (csm) with the proposed paraphrase-based response re-
trieval (para) and LSTM response retrieval (lstm-ret), and
baseline response generation system (smt) with LSTM re-
sponse generation approaches (lstm-gen).

The result of the objective evaluation over the cosine
TF-IDF similarity metrics can be seen in the top section of
Fig. 5. This objective evaluation shows that both lstm-ret

†This data is relatively small, but the limit of what we could
collect after semantic similarity filtering. Test with larger data are
reserved for future work.

Fig. 5 Objective evaluation results over the cosine TF-IDF similarity
(top) and BLEU-4 (bottom) metric.

and lstm-gen approaches significantly outperform the base-
lines not only in the OOE, but also in the CEF case. In this
figure, we can also see that smt approach can pick a good se-
lection of words during generating a response in OOE case,
however in most of the cases we observed that these re-
sponses are incomprehensible [10]. This behavior resulted
in the lower performance of subjective evaluation, as seen
in the following section.

Next, we evaluate our system performance with the
BLEU-4 metric to calculate how well the response can cap-
ture response fluency. The results of the BLEU-4 evaluation
can be seen in the bottom section of Fig. 5. From this evalu-
ation, we can see that again both LSTM approaches perform
better, especially in the CEF case.

Though the para performance is on par with the base-
line overall, we can see that it is slightly better than the
baseline in the OOE case. This is because para approach
performs retrieval capturing paraphrase features. An exam-
ple of how this approach captures paraphrase features can
be seen in Sect. 8.3.

8.2 Subjective Evaluation

Next, we report two varieties of subjective evaluation: natu-
ralness and relevance. A response is categorized as natural if
the sentence is comprehensible and likely to be generated by
a human. On the other hand, we define a relevant response
as a response that is appropriately related to the user query
sentence. We asked 5 human annotators to give a score be-
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Table 1 Various responses for each dialog system.

cef ooe
User Utterance What do you mean by that? Do you know why I’m here?

csm I mean you’re different. I know what you mean.
para I do different things on different days. If you know what I am, you know very

well I can wipe you from existence.
lstm-gen I mean, what do you mean? I know you are.
smt What do I mean by that. I know what I am.

lstm-ret I want to talk about me. I know. I was here.

Fig. 6 Naturalness (top) and Relevance (bottom) for each system.

tween 1-5 to the system response. Each person was asked
to annotate 255 randomly selected query-response pairs that
were evenly distributed over all the systems.

The subjective evaluation on naturalness shows that our
proposed methods para, lstm-ret, and lstm-gen give re-
sponses that are on par with the baseline approaches (see
Fig. 6 at the top section), with lstm-ret performing slightly
better compared to the baseline approaches in both the CEF
and OOE cases. By observing the lstm-gen generated re-
sponses sentence by sentence, we found that most of the
responses are short, compared to the retrieved responses,
which sometimes generate long responses. These short re-
sponses are easy to comprehend and reduce the chance of
grammatical mistakes.

By looking at the subjective relevance evaluation in the
bottom section of Fig. 6, we can observe that the para rele-
vance score is slightly under the baseline. It is tell us that
though para approach is manage to captures the paraphrase

Table 2 This table shows a correlation between two sentences, user input
and example database. We calculate syntactic-semantic score sim [10] for
each utterance pair (S 1 and S 2).

features, it is still difficult to give a relevant answer to the
user query. On the other hand, the lstm-ret retrieval and
lstm-gen generation approaches, compared to the other ap-
proaches, can perform significantly better in the OOE case.
Furthemore, the performance of the lstm-ret retrieval and
lstm-gen generation is almost the same for the CEF case.
This indicates that the LSTM response generation is rela-
tively robust, even in cases where a close match does not
exist in the database.

Finally, we show some results from each of the systems
in Table 1. First, we can see that all algorithms performs rel-
atively well on the CEF case, where we can find a good ex-
ample that matches the user utterance in the dialog database.
In the OOE case, both csm and para may give an uncorre-
lated response, as they might not find a good response in
the dialog database. On the other hand, both lstm-ret and
lstm-gen are more likely to give a short, meaningful, and
correlated response, which corroborates the results of [16].
In many cases, we found that lstm-gen and lstm-ret give a
similar response, which happens because the same LSTM
neural network model is used for both systems.

8.3 Paraphrase-Based Retrieval Performance

Table 2 shows how the paraphrased-based response retrieval
(para) captures the correlation between user input and the
example database. The matrix shows the dynamic pooling
layer of the two sentences. Similar sentence pairs have a
clear diagonal of dark line, indicating low Euclidean dis-
tance. The softmax layer can then identify this pattern as a
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Table 3 Comparison with retrieval based distributed representations.

BLEU-4 Score Cos TF-IDF Score
CEF OOE CEF OOE

csm 0.2191 0.0121 0.5706 0.1541
csm-embd 0.2625 0.0251 0.6548 0.3035
lstm-ret 0.2526 0.0261 0.6130 0.3498
lstm-gen 0.2646 0.0261 0.6240 0.3302

close or paraphrased sentence to the input query.

8.4 Comparison with Retrieval Based on Distributed Rep-
resentations

One difference between the cosine TF-IDF retrieval ap-
proach (csm) and response generation with LSTM (lstm-
gen) is that lstm-gen employs distributed word embeddings
while csm employs discrete representations for words. To
examine the effect of discrete vs. distributed representations,
we perform a follow-up study on retrieving responses with
the cosine similarity over a vector of word embeddings (csm-
embd). The result of our experiment can be seen in the Ta-
ble 3. While both the performance of lstm-gen and lstm-ret
is on par with the csm-embd, we can see that by employing
the distributed word embedding (csm-embd, lstm-ret, lstm-
gen) these approaches could surpass csm approach that does
not use distributed word embeddings. Furthermore we could
also see both lstm-gen and lstm-ret are slightly better com-
pared to the csm-embd in the OOE case.

In addition, the lstm-gen approach has an advantage
in that it is more efficient in terms of the computational
complexity of creating a response. In normal response re-
trieval (csm-embd) we need to traverse all dialog data in the
database, and thus complexity is O(n) where n is the amount
of data in the dialog database. On the other hand, lstm-gen
has a complexity of O(1) in the data size because we don’t
have to traverse all the data. Knowing this is useful espe-
cially when we want to deliver this dialog framework to the
end user in real time.

9. Conclusion

In this work, we investigate several approaches to create a
robust data-driven dialog agent by proposing a new EBDM
method to retrieve and generate a dialog response from the
database utilizing a neural network model. Our experimen-
tal evaluation shows that these neural network retrieval and
generation approaches were effective, and can generate a re-
sponse that on par with the baseline system even better. Fur-
thermore, by focusing on addressing the case where a simi-
lar example does not exists in the training data (OOE case),
we found out that our proposed approach can perform well,
improving the robustness over the baseline approaches.

There are still many improvement can be done to these
methods. One future possibility is to incorporate a knowl-
edge base to the dialog agent. Another way is to maintain
long-term consistency controlling conversation context.
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Young, “Semantically conditioned LSTM-based natural language
generation for spoken dialogue systems,” Proc. EMNLP, Lisbon,
Portugal, pp.1711–1721, 2015.

[18] R. Collobert and J. Weston, “A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning,”
Proc. ICML, Helsinki, Finland, pp.160–167, 2008.

[19] L. Nio, S. Sakti, G. Neubig, T. Toda, and S. Nakamura, “Improving
the robustness of example-based dialog retrieval using recursive neu-
ral network paraphrase identification,” Proc. IEEE SLT, pp.306–311,
2014.

[20] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S.
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