Practical Neural Networks for NLP (Part 2)

Chris Dyer, Yoav Goldberg, Graham Neubig

Previous Part

- DyNet
- Feed Forward Networks
- RNNs

All pretty standard, can do very similar in TF / Theano / Keras.

This Part

- Where DyNet shines -- dynamically structured networks.
- Things that are cumbersome / hard / ugly in other frameworks.


```
WORDS LOOKUP = model.add lookup parameters((nwords, 128))
fwdRNN = dy.LSTMBuilder(1, 128, 50, model)
                      layers in-dim out-dim
dy.renew cg()
# initialize the RNNs
f init = fwdRNN.initial state()
wembs = [word rep(w) for w in words]
fw exps = []
s = f init
for we in wembs:
    s = s.add input(we)
    fw exps.append(s.output())
```

```
WORDS LOOKUP = model.add lookup parameters((nwords, 128))
fwdRNN = dy.LSTMBuilder(1, 128, 50, model)
                      layers in-dim out-dim
dy.renew cg()
# initialize the RNNs
f init = fwdRNN.initial state()
wembs = [word_rep(w) for w in words]
fw exps = []
s = f init
for we in wembs:
    s = s.add input(we)
    fw exps.append(s.output())
```

```
WORDS LOOKUP = model.add lookup parameters((nwords, 128))
fwdRNN = dy.LSTMBuilder(1, 128, 50, model)
                      layers in-dim out-dim
             def word rep(w):
dy.renew cg (
                 w index = vw.w2i[w]
# initialize
                  return WORDS LOOKUP[w index]
f init = fwd
wembs = [word rep(w) for w in words]
fw exps = []
s = f init
for we in wembs:
    s = s.add input(we)
    fw exps.append(s.output())
```

```
WORDS LOOKUP = model.add lookup parameters((nwords, 128))
fwdRNN = dy.LSTMBuilder(1, 128, 50, model)
                      layers in-dim out-dim
dy.renew cg()
# initialize the RNNs
f init = fwdRNN.initial state()
wembs = [word rep(w) for w in words]
fw exps = []
s = f init
for we in wembs:
    s = s.add input(we)
    fw exps.append(s.output())
```

```
WORDS LOOKUP = model.add lookup parameters((nwords, 128))
fwdRNN = dy.LSTMBuilder(1, 128, 50, model)
                      layers in-dim out-dim
dy.renew cg()
# initialize the RNNs
f init = fwdRNN.initial state()
wembs = [word rep(w) for w in words]
fw exps = f init.transduce(wembs)
```

```
WORDS LOOKUP = model.add lookup parameters((nwords, 128))
fwdRNN = dy.LSTMBuilder(1, 128, 50, model)
                      layers in-dim out-dim
dy.renew cg()
# initialize the RNNs
f init = fwdRNN.initial state()
wembs = [word rep(w) for w in words]
fw exps = f init.transduce(wembs)
```



```
WORDS LOOKUP = model.add lookup parameters((nwords, 128))
fwdRNN = dy.LSTMBuilder(1, 128, 50, model)
bwdRNN = dy.LSTMBuilder(1, 128, 50, model)
dy.renew cg()
# initialize the RNNs
f init = fwdRNN.initial state()
b init = bwdRNN.initial state()
wembs = [word rep(w) for w in words]
fw exps = f init.transduce(wembs)
bw exps = b init.transduce(reversed(wembs))
```



```
WORDS LOOKUP = model.add lookup parameters((nwords, 128))
fwdRNN = dy.LSTMBuilder(1, 128, 50, model)
bwdRNN = dy.LSTMBuilder(1, 128, 50, model)
dy.renew cg()
# initialize the RNNs
f init = fwdRNN.initial state()
b init = bwdRNN.initial state()
wembs = [word rep(w) for w in words]
fw exps = f init.transduce(wembs)
bw exps = b init.transduce(reversed(wembs))
# biLSTM states
bi = [dy.concatenate([f,b]) for f,b in zip(fw exps,
                                         reversed(bw exps))]
```



```
WORDS LOOKUP = model.add lookup parameters((nwords, 128))
fwdRNN = dy.LSTMBuilder(1, 128, 50, model)
bwdRNN = dy.LSTMBuilder(1, 128, 50, model)
pH = model.add parameters((32, 50*2))
pO = model.add parameters((ntags, 32))
dy.renew cg()
# initialize the RNNs
f init = fwdRNN.initial state()
b init = bwdRNN.initial state()
wembs = [word rep(w) for w in words]
fw exps = f init.transduce(wembs)
bw exps = b init.transduce(reversed(wembs)
# biLSTM states
bi = [dy.concatenate([f,b]) for f,b in zip(fw exps,
                                        reversed(bw exps))]
# MLPs
H = dy.parameter(pH)
0 = dy.parameter(p0)
outs = [0*(dy.tanh(H * x))  for x in bi]
```

```
WORDS LOOKUP = model.add lookup parameters((nwords, 128))
fwdRNN = dy.LSTMBuilder(1, 128, 50, model)
bwdRNN = dy.LSTMBuilder(1, 128, 50, model)
pH = model.add parameters((32, 50*2))
p0 = model.add parameters((ntags, 32))
dy.renew cg()
# initialize the RNNs
f init = fwdRNN.initial state()
b init = bwdRNN.initial state()
wembs = [word rep(w) for w in words]
fw exps = f init.transduce(wembs)
bw exps = b init.transduce(reversed(wembs)
# biLSTM states
bi = [dy.concatenate([f,b]) for f,b in zip(fw exps,
                                         reversed(bw exps))]
# MLPs
H = dy.parameter(pH)
O = dy.parameter(p0)
outs = [0*(dy.tanh(H * x))  for x in bi]
```

```
def word rep(w):
    w index = vw.w2i[w]
    return WORDS LOOKUP[w index]
dy.renew cg()
# initialize the RNNs
f init = fwdRNN.initial state()
b init = bwdRNN.initial state()
wembs = [word rep(w) for w in words]
fw exps = f init.transduce(wembs)
bw exps = b init.transduce(reversed(wembs)
# biLSTM states
bi = [dy.concatenate([f,b]) for f,b in zip(fw exps,
                                        reversed(bw exps))]
# MLPs
H = dy.parameter(pH)
O = dy.parameter(p0)
outs = [0*(dy.tanh(H * x))  for x in bi]
```

WORDS LOOKUP = model.add lookup parameters((nwords, 128))

Back off to char-LSTM for rare words


```
WORDS LOOKUP = model.add lookup parameters((nwords, 128))
CHARS LOOKUP = model.add lookup parameters((nchars, 20))
cFwdRNN = dy.LSTMBuilder(1, 20, 64, model)
cBwdRNN = dy.LSTMBuilder(1, 20, 64, model)
```

```
WORDS_LOOKUP = model.add_lookup_parameters((nwords, 128))
CHARS_LOOKUP = model.add_lookup_parameters((nchars, 20))
cFwdRNN = dy.LSTMBuilder(1, 20, 64, model)
cBwdRNN = dy.LSTMBuilder(1, 20, 64, model)

def word_rep(w):
    w_index = vw.w2i[w]
    return WORDS_LOOKUP[w_index]
```

```
WORDS_LOOKUP = model.add_lookup_parameters((nwords, 128))
CHARS_LOOKUP = model.add_lookup_parameters((nchars, 20))
cFwdRNN = dy.LSTMBuilder(1, 20, 64, model)
cBwdRNN = dy.LSTMBuilder(1, 20, 64, model)

def word_rep(w):
    w_index = vw.w2i[w]
    return WORDS_LOOKUP[w_index]
```

```
def word_rep(w, cf_init, cb_init):
    if wc[w] > 5:
        w_index = vw.w2i[w]
        return WORDS_LOOKUP[w_index]

else:
    char_ids = [vc.w2i[c] for c in w]
    char_embs = [CHARS_LOOKUP[cid] for cid in char_ids]
    fw_exps = cf_init.transduce(char_embs)
    bw_exps = cb_init.transduce(reversed(char_embs))
    return dy.concatenate([ fw_exps[-1], bw_exps[-1] ])
```

```
def build tagging graph (words):
    dy.renew cg()
    # initialize the RNNs
    f init = fwdRNN.initial state()
    b init = bwdRNN.initial state()
    cf init = cFwdRNN.initial state()
    cb init = cBwdRNN.initial state()
    wembs = [word rep(w, cf init, cb init) for w in words]
    fws = f init.transduce(wembs)
    bws = b init.transduce(reversed(wembs))
    # biLSTM states
    bi = [dy.concatenate([f,b]) for f,b in zip(fws, reversed(bws))]
    # MT.PS
    H = dy.parameter(pH)
    O = dy.parameter(p0)
    outs = [0*(dy.tanh(H * x))  for x in bi]
    return outs
```

```
def tag_sent(words):
    vecs = build_tagging_graph(words)
    vecs = [dy.softmax(v) for v in vecs]
    probs = [v.npvalue() for v in vecs]
    tags = []
    for prb in probs:
        tag = np.argmax(prb)
        tags.append(vt.i2w[tag])
    return zip(words, tags)
```

```
def sent_loss(words, tags):
    vecs = build_tagging_graph(words)
    losses = []
    for v,t in zip(vecs,tags):
        tid = vt.w2i[t]
        loss = dy.pickneglogsoftmax(v, tid)
        losses.append(loss)
    return dy.esum(losses)
```

```
num tagged = cum loss = 0
for ITER in xrange(50):
    random.shuffle(train)
    for i,s in enumerate(train,1):
        if i > 0 and i % 500 == 0: # print status
            trainer.status()
            print cum loss / num tagged
            cum loss = num tagged = 0
        if i % 10000 == 0: # eval on dev
            good = bad = 0.0
            for sent in dev:
                words = [w for w,t in sent]
                golds = [t for w,t in sent]
                tags = [t for w,t in tag sent(words)]
                for qo, qu in zip (golds, tags):
                    if qo == qu: qood +=1
                    else: bad+=1
           print good/(good+bad)
        # train on sent
        words = [w for w, t in s]
        golds = [t for w,t in s]
        loss exp = sent loss(words, golds)
        cum loss += loss exp.scalar value()
        num tagged += len(golds)
        loss exp.backward()
        trainer.update()
```

```
num tagged = cum loss = 0
for ITER in xrange(50):
    random.shuffle(train)
    for i,s in enumerate(train,1):
        if i > 0 and i % 500 == 0: # print status
            trainer.status()
            print cum loss / num tagged
                                                    progress reports
            cum loss = num tagged = 0
        if i % 10000 == 0: # eval on dev
            good = bad = 0.0
            for sent in dev:
                words = [w for w,t in sent]
                golds = [t for w,t in sent]
                tags = [t for w,t in tag sent(words)]
                for go, gu in zip (golds, tags):
                    if go == gu: good +=1
                    else: bad+=1
           print good/(good+bad)
        # train on sent
        words = [w for w,t in s]
                                                       training
        golds = [t for w,t in s]
        loss exp = sent loss(words, golds)
        cum loss += loss exp.scalar value()
        num tagged += len(golds)
        loss exp.backward()
        trainer.update()
```

To summarize this part

- We've seen an implementation of a BiLSTM tagger
- ... where some words are represented as char-level LSTMs
- ... and other words are represented as word-embedding vectors
- ... and the representation choice is determined at run time
- This is a rather dynamic graph structure.

up next

- Even more dynamic graph structure (shift-reduce parsing)
- Extending the BiLSTM tagger to use global inference.

- Build trees by pushing words ("shift") onto a stack and combing elements at the top of the stack into a syntactic constituent ("reduce")
- Given current stack and buffer of unprocessed words, what action should the algorithm take?

Let's use a neural network!

```
tokens is the sentence to be parsed.

oracle_actions is a list of {SHIFT, REDUCE_L, REDUCE_R}.
```

```
def parse(self, tokens, oracle_actions):
```

```
def parse(self, tokens, oracle_actions):
   buffer = []
   stack = []
```

```
def parse(self, tokens, oracle_actions):
    buffer = []
    stack = []
    for tok in reversed(tokens):
        buffer.append(tok)
```

```
def parse(self, tokens, oracle_actions):
    buffer = []
    stack = []
    for tok in reversed(tokens):
        buffer.append(tok)

while not (len(stack) == 1 and len(buffer) == 0):
```

```
def parse(self, tokens, oracle_actions):
    buffer = []
    stack = []
    for tok in reversed(tokens):
        buffer.append(tok)

while not (len(stack) == 1 and len(buffer) == 0):
        action_probs = model(stack, buffer)
        action = oracle_actions.pop()
        loss += pick(action_probs, action)
```

```
def parse(self, tokens, oracle_actions):
    buffer = []
    stack = []
    for tok in reversed(tokens):
        buffer.append(tok)

while not (len(stack) == 1 and len(buffer) == 0):
        action_probs = model(stack, buffer)
        action = oracle_actions.pop()
        loss += pick(action_probs, action)

# execute the action to update the parser state
    if action == SHIFT:
        next_token = buffer.pop()
        stack.append(next_token)
```

```
def parse(self, tokens, oracle actions):
    buffer = []
    stack = []
    for tok in reversed(tokens):
        buffer.append(tok)
   while not (len(stack) == 1 and len(buffer) == 0):
        action probs = model(stack, buffer)
        action = oracle actions.pop()
        loss += pick(action probs, action)
        # execute the action to update the parser state
        if action == SHIFT:
            next token = buffer.pop()
            stack.append(next token)
        else: # one of the REDUCE actions
            right = stack.pop() # pop a stack state
            left = stack.pop() # pop another stack state
            # figure out which is the head and which is the modifier
            head, modifier = (left, right) if action == REDUCE R else (right, left)
```

```
def parse(self, tokens, oracle actions):
    buffer = []
    stack = []
    for tok in reversed(tokens):
        buffer.append(tok)
   while not (len(stack) == 1 and len(buffer) == 0):
        action probs = model(stack, buffer)
        action = oracle actions.pop()
        loss += pick(action probs, action)
        # execute the action to update the parser state
        if action == SHIFT:
            next token = buffer.pop()
            stack.append(next token)
        else: # one of the REDUCE actions
            right = stack.pop() # pop a stack state
            left = stack.pop() # pop another stack state
            # figure out which is the head and which is the modifier
            head, modifier = (left, right) if action == REDUCE R else (right, left)
            tree=compose(head, modifier)
```

```
def parse(self, tokens, oracle_actions):
    buffer = []
    stack = []
    for tok in reversed(tokens):
        buffer.append(tok)
   while not (len(stack) == 1 and len(buffer) == 0):
        action probs = model(stack, buffer)
        action = oracle actions.pop()
        loss += pick(action probs, action)
        # execute the action to update the parser state
        if action == SHIFT:
            next token = buffer.pop()
            stack.append(next token)
        else: # one of the REDUCE actions
            right = stack.pop() # pop a stack state
            left = stack.pop() # pop another stack state
            # figure out which is the head and which is the modifier
            head, modifier = (left, right) if action == REDUCE R else (right, left)
            tree=compose(head, modifier)
            stack.append(tree)
```

- This is a good problem for dynamic networks!
 - Different sentences trigger different parsing states
 - The state that needs to be embedded is complex (sequences, trees, sequences of trees)
 - The parsing algorithm has fairly complicated flow control and data structures

Transition-based parsing Challenges

Transition-based parsing State embeddings

- We can embed words
- Assume we can embed tree fragments
- The contents of the buffer are just a sequence
 - which we periodically "shift" from
- The contents of the stack is just a sequence
 - which we periodically pop from and push to
- Sequences -> use RNNs to get an encoding!
- But running an RNN for each state will be expensive. Can we do better?

- Augment RNN with a stack pointer
- Three constant-time operations
 - push read input, add to top of stack
 - pop move stack pointer back
 - embedding return the RNN state at the location of the stack pointer (which summarizes its current contents)


```
s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)
```



```
s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)
```



```
s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)
```



```
s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)
```



```
s=[rnn.inital_state()]
s.append[s[-1].add_input(x1)
s.pop()
s.append[s[-1].add_input(x2)
s.pop()
s.append[s[-1].add_input(x3)
```


DyNet wrapper implementation:

```
class StackRNN(object):
    def __init__(self, rnn, p_empty_embedding = None):
        self.s = [(rnn.initial_state(), None)]
        self.empty = None
        if p_empty_embedding:
             self.empty = dy.parameter(p_empty_embedding)

    def push(self, expr, extra=None):
        self.s.append((self.s[-1][0].add_input(expr), extra))

def pop(self):
        return self.s.pop()[1] # return "extra" (i.e., whatever the caller wants or None)

def embedding(self):
        # work around since inital_state.output() is None
        return self.s[-1][0].output() if len(self.s) > 1 else self.empty

def __len__(self):
        return len(self.s) - 1
```

Transition-based parsing Representing the state

Transition-based parsing Representing the state

Transition-based parsing Representing the state

head h

modifier head m h

$$\mathbf{c} = \tanh(\mathbf{W}[\mathbf{h}; \mathbf{m}] + \mathbf{b})$$

```
# execute the action to update the parser state
if action == SHIFT:
    tok_embedding, token = buffer.pop()
    stack.push(tok_embedding, (tok_embedding, token))
else: # one of the REDUCE actions
    right = stack.pop() # pop a stack state
    left = stack.pop() # pop another stack state
    # figure out which is the head and which is the modifier
    head, modifier = (left, right) if action == REDUCE_R else (right, left)

# compute composed representation
head_rep, head_tok = head
mod_rep, mod_tok = modifier
composed_rep = dy.tanh(W_comp * dy.concatenate([head_rep, mod_rep]) + b_comp)
stack.push(composed_rep, (composed_rep, head_tok))
```

It is very easy to experiment with different composition functions.

Code Tour

Transition-based parsing Representing the state

Transition-based parsing Representing the state

Transition-based parsing **Pop quiz**

How should we add this functionality?

Structured Training

What do we Know So Far?

- How to create relatively complicated models
- How to optimize them given an oracle action sequence

Local vs. Global Inference

What if optimizing local decisions doesn't lead to good global

decisions?

```
time flies like an arrow

P(NN VBZ PRPDET NN) = 0.4

P(NN NNP VB DET NN) = 0.3

P(VB NNP PRPDET NN) = 0.3

I I I I

NN NNP PRPDET NN
```

- Simple solution: input last label (e.g. RNNLM)
 - → Modeling search is difficult, can lead down garden paths
- Better solutions:
 - Local consistency parameters (e.g. CRF: Lample et al. 2016)
 - Global training (e.g. globally normalized NNs: Andor et al. 2016)

BiLSTM Tagger w/ Tag Bigram Parameters

From Local to Global

Standard BiLSTM loss function:

$$\log P(\boldsymbol{y}|\boldsymbol{x}) = \sum_{i} \log P(y_i|\boldsymbol{x})$$

With transition features:

log emission probs as scores

$$\log P(\boldsymbol{y}, \boldsymbol{x}) = \frac{1}{Z} \sum_{i} (s_e(y_i, \boldsymbol{x}) + s_t(y_{i-1}, y_i))$$

global normalization transition scores

How do We Train?

- Cannot simply enumerate all possibilities and do backprop
- In easily decomposable cases, can use DP to calculate gradients (CRF)
- More generally applicable solutions: structured perceptron, margin-based methods

Structured Perceptron Overview

$$\hat{\boldsymbol{y}} = \operatorname{argmax} \ \operatorname{score}(\boldsymbol{y}|\boldsymbol{x};\boldsymbol{\theta})$$
 time flies like an arrow
$$\frac{\boldsymbol{y}}{\text{Hypothesis}}$$
 NN VBZ PRPDET NN
$$\neq \text{NN NNP VB DET NN}$$
 Update!

Perceptron Loss

 $\ell_{\text{percep}}(\boldsymbol{x}, \boldsymbol{y}, \theta) = \max(\text{score}(\hat{\boldsymbol{y}}|\boldsymbol{x}; \theta) - \text{score}(\boldsymbol{y}|\boldsymbol{x}; \theta), 0)$

Structured Perceptron in DyNet

```
def viterbi_sent_loss(words, tags):
    vecs = build_tagging_graph(words)
    vit_tags, vit_score = viterbi_decoding(vecs, tags)
    if vit_tags != tags:
        ref_score = forced_decoding(vecs, tags)
        return vit_score - ref_score
    else:
        return dy.scalarInput(0)
```

time flies like an arrow

time like flies an arrow S_{1,NN} NN <S> S_{1,NNP} NNP S1,VB **VB** \$1,VBZ VBZ \$1,DET DET \$1,PRP PRP

arrow

flies like time an S_{1,NN} NN NN <S> S₁,NNP NNP S_{1,VB} VB S₁,VBZ VBZ S1,DET DET PRP

arrow

Code

Viterbi Initialization Code

time flies like an arrow

$$S_{0,\langle S\rangle} = 0$$
 $\langle S\rangle$
 $S_{0,NN} = -\infty$
 NNP
 $S_{0,VB} = -\infty$
 VB
 $S_{0,VBZ} = -\infty$
 VBZ
 $S_{0,DET} = -\infty$

$$\boldsymbol{s}_0 = [0, -\infty, -\infty, \ldots]^{\mathrm{T}}$$

```
init_score = [SMALL_NUMBER] * ntags
init_score[S_T] = 0
for_expr = dy.inputVector(init_score)
```


$$s_{f,i,j,k} = s_{f,i-1,j} + s_{e,i,k} + s_{t,j,k}$$

$$s_{f,i,j,k} = s_{f,i-1,j} + s_{e,i,k} + s_{t,j,k}$$

$$\downarrow \text{vectorize}$$

$$s_{f,i,k} = s_{f,i-1} + s_{e,i,k} + s_{t,k}$$

Transition Matrix in DyNet

Add additional parameters

```
TRANS_LOOKUP = model.add_lookup_parameters((ntags, ntags))
```

Initialize at sentence start

```
trans exprs = [TRANS LOOKUP[tid] for tid in range(ntags)]
```

Viterbi Forward in DyNet

```
# Perform the forward pass through the sentence
for i, vec in enumerate(vecs):
   my best ids = []
   my best exprs = []
    for next tag in range(ntags):
        # Calculate vector for single next tag
        next single expr = for expr + trans exprs[next tag]
        next single = next single expr.npvalue()
        # Find and save the best score
        my best id = np.argmax(next single)
        my best ids.append(my best id)
        my best exprs.append(dy.pick(next single expr, my best id))
    # Concatenate vectors and add emission probs
    for expr = dy.concatenate(my best exprs) + vec
    # Save the best ids
   best ids.append(my best ids)
```

and do similar for final "<s>" tag

Viterbi Backward in DyNet

```
# Perform the reverse pass
best_path = [vt.i2w[my_best_id]]
for my_best_ids in reversed(best_ids):
    my_best_id = my_best_ids[my_best_id]
    best_path.append(vt.i2w[my_best_id])
best_path.pop() # Remove final <s>
best_path.reverse()

# Return the best path and best score as an expression
return best_path, best_expr
```

Forced Decoding in DyNet

```
def forced_decoding(vecs, tags):
    # Initialize
    for_expr = dy.scalarInput(0)
    for_tag = S_T
    # Perform the forward pass through the sentence
    for i, vec in enumerate(vecs):
        my_tag = vt.w2i[tags[i]]
        my_trans = dy.pick(TRANS_LOOKUP[my_tag], for_tag)
        for_expr = for_expr + my_trans + vec[my_tag]
        for_tag = my_tag
    for_expr = for_expr + dy.pick(TRANS_LOOKUP[S_T], for_tag)
    return for expr
```

Caveat: Downsides of Structured Training

- Structured training allows for richer models
- But, it has disadvantages
 - Speed: requires more complicated algorithms
 - Stability: often can't enumerate whole hypothesis space
- One solution: initialize with ML, continue with structured training

Bonus: Margin Methods

- Idea: we want the model to be really sure about the best path
- During search, give bonus to all but correct tag

Margins in DyNet

Conclusion

Training NNs for NLP

- We want the flexibility to handle the structures we like
- We want to write code the way that we think about models
- DyNet gives you the tools to do so!
- We welcome contributors to make it even better