Practical Neural
Networks for NLP
(Part 2)

Chris Dyer, Yoav Goldberg, Graham Neubig

Previous Part

* DyNet

e Feed Forward Networks

e RNNS

e All pretty standard, can do very similar in TF / Theano / Keras.

This Part

* Where DyNet shines -- dynamically structured networks.

* Things that are cumbersome / hard / ugly in other
frameworks.

BILSTM Tagger

the brown fox engulted the

BILSTM Tagger

the brown fox engulted the

BILSTM Tagger

tag
A

2

LSTM_F|=—» |LSTM_F| = |LSTM_F \

/ /

the brown fox engulted the

\ \\ \\ LSTM_B| €—|LSTM_B|e—LSTM_B

/

LSTM_F

d
w
|)
"
4
1}

the

BILSTM Tagger

brown

tag

fox

tag

... and we'll complicate it a bit later
LSTM_B[<

tag

* This is by now a very common model
* Shown to be effective in many works

Let's see how to implement it in dynet

engulfed

|
I
—

tag

the

BILSTM Tagger

the brown fox engulted the

BILSTM Tagger

tag tag tag tag tag

the brown fox engulted the

WORDS LOOKUP = model.add lookup parameters((nwords, 128))
fwdRNN = dy.LSTMBuilder (1, 128, 50, model)

layers in-dim out-dim

dy.renew cg()

f init = fwdRNN.1initial state ()

wembs = [word rep(w) for w in words]
fw exps = []
s = f 1nit
for we in wembs:
s = s.add 1nput (we)

fw exps.append(s.output ())

WORDS LOOKUP = model.add lookup parameters((nwords, 128))
fwdRNN = dy.LSTMBuilder(l, 128, 50, model)

layers in-dim out-dim

dy.renew cg()
initialize the RNNs
f init = fwdRNN.1initial state ()

[T

wembs = {word_rep ﬂfor W in words]

fw exps = []

s = f 1nit
for we 1in wembs:
s = s.add 1nput (we)

fw exps.append(s.output ())

WORDS LOOKUP = model.add lookup parameters((nwords, 128))
fwdRNN = dy.LSTMBuilder(l, 128, 50, model)

layers in-dim out-dim

def word rep() :

dy.renew cg(w 1ndex = Vw.w21[wW]
initialize return WORDS LOOKUP[w index]
f Init = fwd

wembs = #word_rep(wgfor w 1n words]
fw exps = []
s = f 1nit
for we in wembs:
s = s.add 1nput (we)

fw exps.append(s.output ())

WORDS LOOKUP = model.add lookup parameters((nwords,))
fwdRNN = dy.LSTMBuilder (1, , , model)

layers in-dim out-dim

dy.renew cg()

f init = fwdRNN.1initial state ()

wembs = [word rep(w) for w in words]
fw exps = []
s = f 1nit
for we in wembs:
s = s.add 1nput (we)

fw exps.append(s.output ())

WORDS LOOKUP = model.add lookup parameters((nwords, 128))
fwdRNN = dy.LSTMBuilder (1, 128, 50, model)

layers in-dim out-dim

dy.renew cg()
f Init = fwdRNN.1nitial state ()
wembs = [word rep(w) for w in words]

fw exps = f 1nit.transduce (wembs)

WORDS LOOKUP = model.add lookup parameters((nwords, 128))
fwdRNN = dy.LSTMBuilder (1, 128, 50, model)

layers in-dim out-dim

dy.renew cg()
f Init = fwdRNN.1nitial state ()
wembs = [word rep(w) for w in words]

fw exps = f 1nit.transduce (wembs)

BILSTM Tagger

tag tag tag tag tag

the brown fox engulted the

BILSTM Tagger

tag tag tag tag tag
T

éééé

/ /
LSTM_F LSTM_F LSTI\/I_F LSTI\/I_F LSTI\/I_F
\ LSTM_B l\ LSTM_B XR LSTM_B l\LSTI\/IB XK LSTM_B
/ / / / /

the brown fox engulted the

WORDS LOOKUP = model.add lookup parameters((nwords,

fwdRNN =
bwdRNN =

dy.LSTMBuilder (1, 128, 50, model)
dy.LSTMBuilder (1, 128, 50, model)

dy.renew cg()

f Init
b_init

wembs =

fw exps
bw exps

[

fwdRNN.1nitial state ()
bwdRNN.1nitial state ()

word rep(w) for w in words]

f 1nit.transduce (wembs)
b 1nit.transduce (reversed (wembs))

128))

BILSTM Tagger

tag tag tag tag tag
T

éééé

/ /
LSTM_F LSTM_F LSTI\/I_F LSTI\/I_F LSTI\/I_F
\ LSTM_B l\ LSTM_B XR LSTM_B l\LSTI\/IB XK LSTM_B
/ / / / /

the brown fox engulted the

BILSTM Tagger

tag tag tag tag tag
T

1 1 1 '

/ / / / /
LSTM_F| 4+ [LSTM_F| 1 |LSTM_F| = |LSTM_F |~ |LSTM_F
\ STM_B A\ STM_B XR STM_B X\LSTMB XK STM_B

/! /! /! /! /!

the brown fox engulted the

WORDS LOOKUP = model.add lookup parameters ((nwords, 128))
fwdRNN = dy.LSTMBuilder (l, 128, 50, model)
bwdRNN = dy.LSTMBuilder (l, 128, 50, model)

dy.renew cg()

f init = fwdRNN.1initial state ()

b 1nit = bwdRNN.1i1nitial state ()

wembs = [word rep(w) for w 1n words]

fw exps = f 1nit.transduce (wembs)

bw exps = b 1nit.transduce (reversed (wembs))
bi = [dy.concatenate([f,b]) for f,b 1n zip(fw exps,

reversed (bw exps))]

BILSTM Tagger

tag tag tag tag tag
T

1 1 1 '

/ / / / /
LSTM_F| 4+ [LSTM_F| 1 |LSTM_F| = |LSTM_F |~ |LSTM_F
\ STM_B A\ STM_B XR STM_B X\LSTMB XK STM_B

/! /! /! /! /!

the brown fox engulted the

BILSTM Tagger

tag tag tag tag tag
T

éééé

/ /
LSTM_F LSTM_F LSTI\/I_F LSTI\/I_F LSTI\/I_F
\ LSTM_B x LSTM_B XR LSTM_B %LSTI\/IB XK LSTM_B
/ / / / /

the brown fox engulted the

WORDS LOOKUP = model.add lookup parameters ((nwords,))

fwdRNN = dy.LSTMBuilder (1, , , model)
bwdRNN = dy.LSTMBuilder (1, , , model)
pH = model.add parameters ((, *2))
PO = model.add parameters((ntags,))

dy.renew cg()

f 1nit = fwdRNN.i1nitial state ()
b 1nit = bwdRNN.1nitial state ()

wembs = [word rep(w) for w i1n words]

fw exps = £ 1init.transduce (wembs)

bw exps = b 1nit.transduce (reversed (wembs)
bi = [dy.concatenate([f,b]) for f,b 1n zip(fw exps,

reversed (bw exps))]

H = dy.parameter (pH)
O = dy.parameter (pO)
outs = [O*(dy.tanh(H * x)) for x in bi]

WORDS LOOKUP = model.add lookup parameters((nwords, 128))
fwdRNN = dy.LSTMBuilder(l, 128, 50, model)
bwdRNN = dy.LSTMBuilder (l, 128, 50, model)

pH = model.add parameters((32, 50*2))
pO = model.add parameters ((ntags, 37))

dy.renew cg()

f 1nit = fwdRNN.i1nitial state ()

b 1nit = bwdRNN.1initial state ()

wembs = [word rep(w)| for w in words]

fw exps = £ 1init.transduce (wembs)

bw exps = b 1nit.transduce (reversed (wembs)
bi = [dy.concatenate([f,b]) for f,b 1n zip(fw exps,

reversed (bw exps))]

H = dy.parameter (pH)
O = dy.parameter (pO)
outs = [O*(dy.tanh(H * x)) for x in bi]

WORDS LOOKUP = model.add lookup parameters((nwords, 128))

def word rep(w) : - o
! w index = vw.w21[w]
‘ return WORDS LOOKUP[w index]

dy.renew cg()

initialize the RNNs

f 1nit = fwdRNN.1i1nitial state ()
b 1nit = bwdRNN.1nitial state ()

wembs = [word rep(w)| for w in words]
fw exps = £ 1init.transduce (wembs)
bw exps = b 1nit.transduce (reversed (wembs)

biLSTM states

bi = [dy.concatenate([f,b]) for f,b 1n zip(fw exps,
reversed (bw exps))]

MLPsS

H = dy.parameter (pH)

O = dy.parameter (pO)

outs = [O*(dy.tanh(H * x)) for x in bi]

BILSTM Tagger

the brown fox engulted the

BILSTM Tagger

the brown fox engulfed the

Back off to char-LSTM
for rare words

T

\
C_F|-|C_F|»|C_F+|C_F»|C_F»|C_F»C_F»C_F

C_B

«C_B|«C_B|«C_B|«C_B|«C_B|«C_B|«C_B

BILSTM Tagger

the brown fox engulfed the

BILSTM Tagger

tag tag tag tag fag

eeeeeeee

BILSTM Tagger

tag tag tag tag tag

WORDS_LOOKUP = model.add lookup parameters ,
- CHARS LOOKUP = model.add lookup parameters((nchars, 20))
‘chdRNN = dy.LSTMBuilder (1, 20, 64, model)

‘\
' ¢cBwdRNN = dy.LSTMBuilder (1, 20, 64, model)

WORDS LOOKUP = model.add lookup parameters ((nwords,))

CHARS LOOKUP = model.add lookup parameters ((nchars,))
CcFwdRNN = dy.LSTMBuilder (1, , , model)

cBwdRNN = dy.LSTMBuilder (1, , , model)

def word rep(w):
w 1ndex = Vw.w21[w]
return WORDS LOOKUP[w 1ndex]

WORDS LOOKUP
CHARS LOOKUP
dy.
dy.

cFwdRNN
cBwdRNN

def word rep (w

= model.add lookup parameters((nwords, 128))

= model.add lookup parameters ((nchars, 20))
LSTMBuilder (1, 20, 64, model)

LSTMBuilder (1, 20, 64, model)

, cf 1nit, cb init):

i1f wc[w] > 5:
w index = VW.W21[W]
return WORDS LOOKUP[w 1ndex]
else:
char 1ds = [vc.w21[c] for c 1in w]
char embs = [CHARS LOOKUP[cid] for cid in char 1ds]
fw exps = cf 1nit.transduce (char embs)
bw exps = cb 1nit.transduce (reversed (char embs))

return dy.concatenate ([fw exps[-1], bw exps[-1]])

def build tagging graph (words) :
dy.renew cg()

f Init = fwdRNN.1nitial state()
b init = bwdRNN.initial state ()

cf init = cFwdRNN.1initial state()
cb init = cBwdRNN.i1nitial state()

wembs = [word rep(w, cf init, cb 1init) for w in words]

fws = £ 1nit.transduce (wembs)

bws = b init.transduce (reversed (wembs))

b1 = [dy.concatenate([f,b]) for f,b in zip(fws, reversed (bws))]

H = dy.parameter (pH)

O = dy.parameter (pO)

outs = [0O*(dy.tanh(H * x)) for x in bi]
return outs

def tag sent (words):
vecs = build tagging graph (words)

vecs = [dy.softmax(v) for v 1in vecs]
probs = [v.npvalue () for v 1in vecs]
tags = []

for prb in probs:
tag = np.argmax (prb)
tags.append(vt.12w[taqg])
return zip (words, tags)

def sent loss(words, tags):

vecs = builld tagging graph (words)

losses = []

for v,t 1n zip(vecs, tags):
tid = vt.w21i[t]
loss = dy.pickneglogsoftmax (v, tid)
losses.append(loss)

return dy.esum(losses)

num tagged = cum loss =
for ITER 1in xrange () :
random.shuffle(train)
for 1,s in enumerate (train, 1) :
if 1 > and 1 % ==
trainer.status ()
print cum loss / num tagged
cum loss = num tagged =
if 1 % == (:
good = bad =
for sent in dev:
words = [w for w,t 1n sent]
golds = [t for w,t in sent]
tags = [t for w,t 1n tag sent (words)]
for go,gu in zip(golds, tags):
i1f go == gu: good +=
else: bad+=
print good/ (good+bad)

words = [w for w,t in s]
golds = [t for w,t in s]
loss exp = sent loss(words, golds)

cum loss += loss exp.scalar value()
num tagged += len(golds)

loss exp.backward()
tralner.update ()

num tagged = cum loss =
for ITER 1in xrange () :
random.shuffle(train)
for 1,s in enumerate (train, 1) :
if 1 > and 1 % ==
trainer.status ()
print cum loss / num tagged
cum loss = num tagged =
if 1 % == (:
good = bad =
for sent in dev:
words = [w for w,t 1n sent]
golds = [t for w,t in sent]
tags = [t for w,t 1n tag sent (words)]
for go,gu in zip(golds, tags):
i1f go == gu: good +=
else: bad+=
print good/ (good+bad)

words = [w for w,t in s]
golds = [t for w,t in s]
loss exp = sent loss(words, golds)

cum loss += loss exp.scalar value()
num tagged += len(golds)

loss exp.backward()
tralner.update ()

o summarize this part

We've seen an implementation of a BiLSTM tagger
... where some words are represented as char-level LSTMs

... and other words are represented as word-embedding
vectors

... and the representation choice is determined at run time

This is a rather dynamic graph structure.

Up next

* Even more dynamic graph structure (shift-reduce parsing)

* Extending the BILSTM tagger to use global inference.

Transition-Basead
Parsing

Stack | Buffer

| saw her duck
| saw her duck
| saw | her duck

-
| saw | her duck

—
| saw her | duck

¥\

| saw her duck
¥ \ o

| saw her duck

KN\ — <
| saw her duck

Action

SHIFT
SHIFT

REDUCE-L

SHIFT
SHIFT
REDUCE-L
REDUCE-R

Transition-based parsing

* Build trees by pushing words (“shift”) onto a stack
and combing elements at the top of the stack into a
syntactic constituent (“reduce”)

* Given current stack and buffer of unprocessed
words, what action should the algorithm take?

Let’s use a neural network!

Transition-based parsing

tokens Is the sentence to be parsed.
oracle actions is alist of {SHIFT, REDUCE L, REDUCE R}

def parse(self, tokens, oracle actions):

Transition-based parsing

tokens Is the sentence to be parsed.
oracle actions is alist of {SHIFT, REDUCE L, REDUCE R}
def parse(self, tokens, oracle actions):

buffer = []
stack = []

Transition-based parsing

tokens Is the sentence to be parsed.
oracle actions is alist of {SHIFT, REDUCE L, REDUCE R}

def parse(self, tokens, oracle actions):
buffer = []

stack = []
for tok in reversed(tokens):
buffer.append(tok)

Transition-based parsing

tokens Is the sentence to be parsed.
oracle actions is alist of {SHIFT, REDUCE L, REDUCE R}

def parse(self, tokens, oracle actions):
buffer = []

stack = []
for tok in reversed(tokens):
buffer.append(tok)

while not (len(stack) == 1 and len(buffer) == 0):

Transition-based parsing

tokens Is the sentence to be parsed.
oracle actions is alist of {SHIFT, REDUCE L, REDUCE R}

def parse(self, tokens, oracle actions):
buffer = []

stack = []
for tok in reversed(tokens):
buffer.append(tok)

while not (len(stack) == 1 and len(buffer) == 0):
action probs = model(stack, buffer)
action = oracle actions.pop()
loss += pick(action probs, action)

Transition-based parsing

tokens IS the sentence to be parsed.
oracle actions is alist of {SHIFT, REDUCE L, REDUCE R}

def parse(self, tokens, oracle actions):

buffer = []
stack = []
for tok in reversed(tokens):
buffer.append(tok)
while not (len(stack) == 1 and len(buffer) == 0):

action probs = model(stack, buffer)
action = oracle actions.pop()
loss += pick(action probs, action)

execute the action to update the parser state
if action == SHIFT:
next token = buffer.pop()
stack.append(next_ token)

Transition-based parsing

tokens Is the sentence to be parsed.
oracle actions is alist of {SHIFT, REDUCE L, REDUCE R}

def parse(self, tokens, oracle actions):

buffer = []
stack = []
for tok in reversed(tokens):
buffer.append(tok)
while not (len(stack) == 1 and len(buffer) == 0):

action probs = model(stack, buffer)
action = oracle actions.pop()
loss += pick(action probs, action)

execute the action to update the parser state
if action == SHIFT:
next token = buffer.pop()
stack.append(next_ token)
else: # one of the REDUCE actions
right = stack.pop() # pop a stack state
left = stack.pop() # pop another stack state
figure out which is the head and which 1s the modifier
head, modifier = (left, right) if action == REDUCE R else (right, left)

Transition-based parsing

tokens Is the sentence to be parsed.
oracle actions is alist of {SHIFT, REDUCE L, REDUCE R}

def parse(self, tokens, oracle actions):

buffer = []
stack = []
for tok in reversed(tokens):
buffer.append(tok)
while not (len(stack) == 1 and len(buffer) == 0):

action probs = model(stack, buffer)
action = oracle actions.pop()
loss += pick(action probs, action)

execute the action to update the parser state
if action == SHIFT:
next token = buffer.pop()
stack.append(next_ token)
else: # one of the REDUCE actions
right = stack.pop() # pop a stack state
left = stack.pop() # pop another stack state
figure out which is the head and which 1s the modifier
head, modifier = (left, right) if action == REDUCE R else (right, left)
tree=compose(head, modifier)

Transition-based parsing

tokens Is the sentence to be parsed.
oracle actions is alist of {SHIFT, REDUCE L, REDUCE R}

def parse(self, tokens, oracle actions):

buffer = []
stack = []
for tok in reversed(tokens):
buffer.append(tok)
while not (len(stack) == 1 and len(buffer) == 0):

action probs = model(stack, buffer)
action = oracle actions.pop()
loss += pick(action probs, action)

execute the action to update the parser state
if action == SHIFT:
next token = buffer.pop()
stack.append(next_ token)
else: # one of the REDUCE actions
right = stack.pop() # pop a stack state
left = stack.pop() # pop another stack state
figure out which is the head and which 1s the modifier
head, modifier = (left, right) if action == REDUCE R else (right, left)
tree=compose(head, modifier)
stack.append(tree)

Transition-based parsing

* Thisis a good problem for dynamic networks!

* Different sentences trigger different parsing
states

* [he state that needs to be embedded is complex
(sequences, trees, sequences of trees)

* [he parsing algorithm has fairly complicated tlow
control and data structures

Transition-based parsing
Challenges

unbounded depth unbounded length
——— ————

N\
arbitrarily complex trees—» | saw her duck
) N\
| saw her duck

reading and
forgetting

\

¥\
. | saw her duck

Transition-based parsing
State embeddings

* We can embed words
 Assume we can embed tree fragments
* The contents of the buffer are just a sequence
* which we periodically “shift” from
* The contents of the stack is just a sequence
* which we periodically pop from and push to
e Sequences -> use RNNs to get an encoding!

* But running an RNN for each state will be expensive. Can we do better?

Transition-based parsing
Stack RNNs

 Augment RNN with a stack pointer
* Three constant-time operations
 push - read input, add to top of stack
e pop - move stack pointer back
e embedding - return the RNN state at the location

of the stack pointer (which summarizes its
current contents)

Transition-based parsing
Stack RNNs

/ DyNet:
yO s=[rnn.inital state()]

Transition-based parsing
Stack RNNs

/ DyNet:
s=[rnn.inital state()]
yO y]- s.append[s[-1].add_input(x1)

Transition-based parsing
Stack RNNs

/ DyNet:
s=[rnn.inital state()]
yO y]- s.append[s[-1].add_input(x1)
1 1 S.pop ()
+—>

Transition-based parsing
Stack RNNs

/ DyNet:
s=[rnn.inital state()]
yO y]- y2 s.append[s[-1].add_input(x1)
1 1 1 s.pop ()
s.append[s[-1].add_input(x2)

Transition-based parsing
Stack RNNs

/ DyNet:
s=[rnn.inital state()]
yO y]- y2 s.append[s[-1].add_input(x1)
1 1 1 s.pop ()
s.append[s[-1].add_input(x2)
[, s.pop ()

Transition-based parsing
Stack RNNs

|
/ DyNet:

s=[rnn.inital state()]
yO yl y2 Y3 s.append[s[-1].add_input (x1)
1 1 1 1 -pop ()
s.append[s[-1].add_input(x2)
s.pop ()

s.append[s[-1].add_input(x3)

Transition-based parsing

DyNet wrapper implementation:

class StackRNN(object):
def init (self, rnn, p empty embedding = None):
self.s = [(rnn.initial state(), None)]
self.empty = None
if p empty embedding:
self.empty = dy.parameter(p_empty embedding)
def push(self, expr, extra=None):
self.s.append((self.s[-1][0].add_input(expr), extra))
def pop(self):
return self.s.pop()[1l) # return "extra" (i.e., whatever the caller wants or None)
def embedding(self):
work around since inital state.output() is None
return self.s[-1][0].output() if len(self.s) > 1 else self.empty
def _ len_ (self):
return len(self.s) - 1

Transition-based parsing
Representing the state

SHIFT REDUCE_R
Pt

Transition-based parsing
Representing the state

SHIFT REDUCE_R
S
Pt
/ AN\

R =

— —

T T amod
0 an [\ decision

overhasty

Transition-based parsing
Representing the state

SHIFT REDUCE R
S pt@ B
QZ / \ ﬁy
T T amod T T T
0 an [\ decision was made ROOT

overhasty

Transition-based parsing
Syntactic compositions

head

Transition-based parsing
Syntactic compositions

modifier head

m h

Transition-based parsing
Syntactic compositions

c = tanh(Wh; m| + b)

P
modifier head

m h

Transition-based parsing
Syntactic compositions

execute the action to update the parser state
if action == SHIFT:
tok embedding, token = buffer.pop()
stack.push(tok embedding, (tok embedding, token))
else: # one of the REDUCE actions
right = stack.pop() # pop a stack state
left = stack.pop() # pop another stack state
figure out which is the head and which is the modifier
head, modifier = (left, right) if action == REDUCE R else (right, left)

compute composed representation
head rep, head tok = head
mod rep, mod tok = modifier

composed rep = dy.tanh(W_comp * dy.concatenate([head rep, mod rep]) + b _comp)

stack.push(composed rep, (composed rep, head tok))

It is very easy to experiment with different
composition functions.

Code Tour

Transition-based parsing
Representing the state

SHIFT REDUCE R
S pt@ B
QZ / \ ﬁy
T T amod T T T
0 an [\ decision was made ROOT

overhasty

Transition-based parsing
Representing the state

&

SHIFT REDUCE_R
Pt

>

S

T amod

an [\ decision

overhasty

—

— |e—

<— SHIFT

T

wdas

T T

made ROOT

20
y
«— REDUCE-LEFT(amod)

Transition-based parsing
Pop quiz

 How should we add this functionality”?

Structured Training

What do we Know So Far?

* How to create relatively complicated models

* How to optimize them given an oracle action
seqguence

| ocal vs. Global Inference

 What if optimizing local decisions doesn’t lead to good global

decisions? , , ,
time flies like an arrow

°(NN VBZ PRPDET NN)=0.4
°(NN NNP VB DET NN) = 0.3

(VB NNP PRPDET NN) = 0.3

! ! Voo !
NN NNP PRPDET NN

e Simple solution: input last label (e.g. RNNLM)
— Modeling search is difficult, can lead down garden paths

e Better solutions:
e |ocal consistency parameters (e.g. CRF: Lample et al. 2016)
« Global training (e.g. globally normalized NNs: Andor et al. 2016)

BILSTM Tagger w/ Tag
Bigram Parameters

<S> fag fag fag fag fag <S>

f ! f f

e n g uvu 1 f e d

From Local to Global

e Standard BiLSTM loss function:

log P(y|x) = ZlogP i)

|l0g emission
* With transition features: probs as scores
1
log P(y, CB) — E Z(Se(yia CE) - St(yi—la y”&))

1

T T

global normalization transition scores

How do We Train”

e Cannot simply enumerate all possibilities and do backprop

* |n easily decomposable cases, can use DP to calculate
gradients (CRF)

* More generally applicable solutions: structured perceptron,
margin-based methods

Structured Perceptron
Overview

A

Yy = argmax score(y|x; 0)
Yy
time flies like an arrow

Reference Hypothesis

NN VBZ PRPDET NN F NN NNP VB DET NN

}
Update!

Perceptron | 0ss

Cpercep(®, Y, 0) = max(score(g|; 6) — score(y|; 0), 0)

Structured Perceptron in
DyNet

def viterbili sent loss(words, tags):
vecs = builld tagging graph (words)

vit tags, vit score = viterbi decoding(vecs, tags)
if vit tags != tags:

ref score = forced decoding(vecs, tags)

return vit score - ref score
else:

return dy.scalarInput (0)

Viterbi Algorithm

time flies ke an arrow

o

Viterbi Algorithm

t|me flies ke an arrow

@

NNNNN

Viterbi Algorithm

time flies ke an arrow
S1.NN

Viterbi Algorithm

time flies ke an arrow

Viterbi Algorithm

time flies ke an arrow

Viterbi Algorithm

time flies ke an arrow

S1,NN S2 NN S3,NN S4 NN S5,NN S6,<s>

Viterbi Algorithm

time flies ke an arrow

S1,NN S2 NN S3,NN S4 NN S5,NN S6,<s>

| S1 NAW 2 NNP 7@Nl‘ A NNP o NNP
ENCNYONCI®

Code

Viterbi Initialization Code

So,<s> = 0

®

SONN = -0

®

SONNP = -0

-CO

S0,VB

-0

S0,VBZ

SO DET = -

time

flies ke an arrow
T
sop = |0, —00, —00, .. .|
1nit score = [SMALL NUMBER] * ntags
1nit scorel[S T] = 0
for expr = dy.inputVector (init score)

Viterbi Forward Step

time flies
S1 NN

e @ @ Z(Se(yia x) + 5¢(Yiz1,Y:))

i = NN

ot

/)
NNP \ \ \
S2 NNP.NN

Sfaiajak — Sf,’l,—]_,] —|_ Seaiak —|_ Stv.]ak
forward transition

emission

me step)
P (previous POS)

K = NN (next POS)

Viterbi Forward Step

time flies

S1 NN

S2,NN,NN
(=2

SLNNPSZNNPN
So VB .. —
(W[| ik = 8115+ Sesi + St

Viterbi Forward Step

time flies
STNN Sfaiajak — Sf,’L—]_,] _I_ S@,’I:,k _|_ Sta.]ak

e NN SZ,NN,NN» |
3 l vectorize

S2 NNPX

S1,NNP

Stik = S8fi-17T Seik T Stk

Viterbi Forward Step

time flies
S1,NN sonn Stk = Sfi—1,5 T Seyik T Stk

e @ @ l vectorize

S1,NNP

Stik = 8fi-1T Se,ik T Stk

| max
S,k = max(sys k)

Viterbi Forward Step

time flies

Stk = Sfi—1,7 T Se,i,k T St.j.k
| vectorize
Sfik = Sfi—1 T Se,ik T Stk
| max
Sfik = max(Ss; k)
recurse | concat
Sri=concat(sf;1,5¢4:2,-..)

Transition Matrix in DyNet

Add additional parameters

TRANS LOOKUP = model.add lookup parameters((ntags, ntags))

Initialize at sentence start

trans exprs = [TRANS LOOKUP[tid] for tid in range (ntags)]

Viterbl Forward in DyNet

for 1, vec in enumerate (vecs) :
my best ids = []
my best exprs = []
for next tag in range(ntags):

next single expr = for expr + trans exprs[next tag]
next single = next single expr.npvalue ()

my best 1d = np.argmax(next single)
my best ids.append(my best 1d)
my best exprs.append(dy.pick(next single expr, my best 1d))

for expr = dy.concatenate (my best exprs) + vec

best i1ds.append(my best 1ds)

and do similar for final "<s>" tag

Viterbl Backward in DyNet

best path = [vt.12w[my best 1d]]

for my best 1ds in reversed (best 1ds):
my best 1d = my best 1ds[my best 1d]
best path.append(vt.iZ2w[my best 1d])

best path.pop ()

best path.reverse ()

return best path, best expr

Forced Decoding in DyNet

def forced decoding(vecs, tags):

for expr = dy.scalarInput (0)
for tag = S T

for 1, vec i1n enumerate (vecs):

my tag = vt.wZ2i[tags[1]]

my trans = dy.pick(TRANS LOOKUP[my tag], for tag)

for expr = for expr + my trans + vec[my tag]

for tag = my tag
for expr = for expr + dy.pick (TRANS LOOKUP[S T], for tag)
return for expr

Caveat: Downsides of
Structured Training

e Structured training allows for richer models
 But, it has disadvantages
e Speed: requires more complicated algorithms
o Stability: often can’'t enumerate whole hypothesis space

 One solution: initialize with ML, continue with structured
training

Bonus: Margin Methods

* |dea: we want the model to be really sure about the best path

* During search, give bonus to all but correct tag

Margins in DyNet

def viterbi decoding(vecs, gold tags = []):
for 1, vec in enumerate (vecs) :

for expr = dy.concatenate (my best exprs) + vec

if MARGIN != and len(gold tags) !=
adjust = [MARGIN] * ntags

adjust[vt.wZ21[gold tags[i]]] =
for expr = for expr + dy.ilnputVector (adjust)

Conclusion

Training NNs for NLP

We want the flexibility to handle the structures we like
We want to write code the way that we think about models
DyNet gives you the tools to do so!

We welcome contributors to make it even better

