NAIST NLP Programming Tutorial 2 - Bigram Language Model

NLP Programming Tutorial 2 -
Bigram Language Models

Graham Neubig
Nara Institute of Science and Technology (NAIST)

NAIST NLP Programming Tutorial 2 - Bigram Language Model

Review:

Calculating Sentence Probabillities
* We want the probabillity of

W = speech recognition system

* Represent this mathematically as:

P(JW| = 3, w ="speech”, w_="recognition”, w_="system”) =

P(w ="speech” | w = "<s>")

* P(w_="recognition” | w_= “<s>" w ="speech”
2 0 1

* P(w_="system” | w_= “<s>", w ="“speech”, w_="recognition”
3 0 1 2

* P(w,="</s>" | w, = "<s>", w ="speech”, w_="recognition”, w_="system”)

NOTE: NOTE:
sentence start <s> and end </s> symbol P(w =<s>) =1

2

NAIST NLP Programming Tutorial 2 - Bigram Language Model

Incremental Computation

* Previous equation can be written:

W+ 1
P<W):Hi:1 P(w|wgy...w, ;)

» Unigram model ignored context:

P(Wi‘Wo---Wi—l)NP(WJ

NAIST NLP Programming Tutorial 2 - Bigram Language Model

Unigram Models Ignore Word Order!

* |[gnoring context, probabilities are the same:

P (w=speech recognition system) =

uni

P(w=speech) * P(w=recognition) * P(w=system) * P(w=</s>)

P_(w=system recognition speech) =
P(w=speech) * P(w=recognition) * P(w=system) * P(w=</s>)

NAIST

NLP Programming Tutorial 2 — Bigram Language Model

Unigram Models Ignore Agreement!

* Good sentences (words agree):

P (w=iam) =

uni

P(w=I) * P(w=am) * P(w=</s>)

P (w=we are) =

uni

P(w=we) * P(w=are) * P(w=</s>)

» Bad sentences (words don't agree)

P (w=we am) =

uni

P(w=we) * P(w=am) * P(w=</s>)

\/

P (w=iare) =

uni

P(w=I) * P(w=are) * P(w=</s>)

\/

But no penalty because probabilities are independent!

NAIST NLP Programming Tutorial 2 - Bigram Language Model

Solution: Add More Context!

Unigram model ignored context:

P(Wi‘WO°°°Wi—1>NP(Wi>

Bigram model adds one word of context

P(Wi|WO°°°Wi—1)NP(Wi‘wi—l)

Trigram model adds two words of context

P(""i‘wo- . Wi—l)NP (Wi‘wi—zwi—l)

* Four-gram, five-gram, six-gram, etc... 6

NAIST NLP Programming Tutorial 2 - Bigram Language Model

Maximum Likelihood Estimation

of n-gram Probabillities
» Calculate counts of n word and n-1 word strings

P(w|w C(Wine1-- W)

et Wi)=
C(Wiper-- Wiy

| live In osaka . </s>
| am a graduate student . </s>
my school is in nara . </s>

P(osaka | in) = c¢(in osaka)/c(in) =1/2=0.5
P(nara | In) = c(in nara)/c(in)=1/2=0.5

7

n=2

NAIST NLP Programming Tutorial 2 - Bigram Language Model

Still Problems of Sparsity

* When n-gram frequency is O, probability is O

P(osaka | In) =c(losaka)/c(in) =1/2=0.5
P(nara | in) =c(inara)lc(in) =1/2=0.5
P(school | In) = c(in school)/c(in) =0/ 2 = 0!

» Like unigram model, we can use linear interpolation

Bigram: P(Wi‘wi—1):kszL(Wi‘Wi—l)"' (1_7\'2)P(Wi)

Unigram: - P (w;)=\ Py (w;)+ (1_7\1)%

NAIST

NLP Programming Tutorial 2 — Bigram Language Model

A,=0.95,\, =0.95
A,=0.95, A, =0.90
A,=0.95, A, =0.85

A,=0.95,\,=0.05
A,=0.90,\, =0.95
A,=0.90, %, =0.90

2

o

L o

A,=0.05,\,=0.10
A,=0.05,\,=0.05

Choosing Values of A: Grid Search

» One method to choose A, A : try many values

Problems:

Too many options
— Choosing takes time!

Using same A for all n-grams
— There is a smarter way!

NAIST NLP Programming Tutorial 2 - Bigram Language Model

Context Dependent Smoothing

High frequency word: “Tokyo” Low frequency word: “Tottori”
c(Tokyo city) = 40 c(Tottori is) = 2
c(Tokyo is) = 35 c(Tottori city) = 1

c(Tokyo was) = 24
c(Tokyo tower) = 15
c(Tokyo port) = 10

Most 2-grams already exist Many 2-grams will be missing
— Large A is better! - Small A Is better!

 Make the interpolation depend on the context

P(Wi‘wi—1>:7\'wiIPML(Wi‘Wi—1>+ (1_7\'wi1)P(Wi> 10

NAIST NLP Programming Tutorial 2 - Bigram Language Model

Witten-Bell Smoothing

* One of the many ways to choose 7\WH

U<Wi—1)

P, =1 u(wi_y)+ c(w_y)

W, 4

u(wl-_l) = number of unique words after w._

* For example:

c(Tottori is) = 2 c(Tottori city) = 1 c(Tokyo city) = 40 c(Tokyo is) = 35 ...
c(Tottori) = 3 u(Tottori) = 2 c(Tokyo) =270 u(Tokyo) = 30

2 30
}\'Tottori_l 2+ 3 _06 }\'Tokyo_ 1 30+ 270 — 09

11

NAIST NLP Programming Tutorial 2 - Bigram Language Model

Programming Techniques

12

NAIST NLP Programming Tutorial 2 - Bigram Language Model

Inserting into Arrays

* To calculate n-grams easily, you may want to:

my_words = ['this”, *is”, “a", “pen’]
\
my_words = ['<s>", “this”, “is”, “a”, “pen”, “</s>"]

 This can be done with:

my_words.append(“</s>") # Add to the end
my_words.insert(0, “<s>") # Add to the beginning

13

NAIST NLP Programming Tutorial 2 - Bigram Language Model

Removing from Arrays

. Given an n-gramwithw__ ... w, we may want the

context w. e W,
I-n+1 -1

 This can be done with:

my_ngram = “tokyo tower”

my_words = my_ngram.split(* “) # Change into [“tokyo”, “tower”]
my_words.pop() # Remove the last element (“tower”)
my_context = “ “.join(my_words) # Join the array back together

print my_context

14

NAIST NLP Programming Tutorial 2 - Bigram Language Model

Exercise

15

NAIST NLP Programming Tutorial 2 - Bigram Language Model

Exercise

* Write two programs

 train-bigram: Creates a bigram model

 test-bigram: Reads a bigram model and calculates
entropy on the test set

* Test train-bigram on test/02-train-input.txt
 Train the model on data/wiki-en-train.word

» Calculate entropy on data/wiki-en-test.word (if linear
interpolation, test different values of A)

* Challenge:

« Use Witten-Bell smoothing (Linear interpolation is easier)

* Create a program that works with any n (not just bi-gram) "

|N/A\|| S-“_ NLP Programming Tutorial 2 - Bigram Language Model
train-bigram (Linear Interpolation)

create map counts, context_counts

for each l/ine in the training_file

split /ine into an array of words
append “</s>" to the end and “<s>" to the beginning of words

for each i in 1 to length(words)-1 # Note: starting at 1, after <s>

counts['w_ w’'+=1 # Add bigram and bigram context

context_counts['w_"]+=1
counts[*w’] +=1
context_counts[*"] +=1

open the model_file for writing
for each ngram, count in counts
split ngram into an array of words #*w_w" - {'w_" "w’

remove the last element of words # {*w ", ‘w’} - {"w "
join words into context #{w - w

probability = counts[ngram]/context_counts[context]
print ngram. probabllity to model file

Add unigram and unigram context

17

NAIST NLP Programming Tutorial 2 - Bigram Language Model

test-bigram (Linear Interpolation)
= 777,)\2 = ?7?, V=1000000, W=0,H=0

1

load model into probs

for each line in test file
split /ine into an array of words
append “</s>” to the end and “<s>" to the beginning of words
for each i in 1 to length(words)-1 # Note: starting at 1, after <s>
P1=A probs['w’]+(1—-A)/V # Smoothed unigram probability

P2 =M probs['w_ w’']+(1—A)*P1# Smoothed bigram probability
H +=-log _(P2)
W+=1

print “entropy = "+H/W

18

NAIST NLP Programming Tutorial 2 - Bigram Language Model

Thank You!

19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

