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Review:
Calculating Sentence Probabilities

● We want the probability of 

● Represent this mathematically as:

W = speech recognition system

P(|W| = 3, w
1
=”speech”, w

2
=”recognition”, w

3
=”system”) =

P(w
1
=“speech” | w

0
 = “<s>”)

* P(w
2
=”recognition” | w

0
 = “<s>”, w

1
=“speech”)

* P(w
3
=”system” | w

0
 = “<s>”, w

1
=“speech”, w

2
=”recognition”)

* P(w
4
=”</s>” | w

0
 = “<s>”, w

1
=“speech”, w

2
=”recognition”, w

3
=”system”)

NOTE:
sentence start <s> and end </s> symbol

NOTE:
P(w

0
 = <s>) = 1
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Incremental Computation

● Previous equation can be written: 

● Unigram model ignored context:

P(W )=∏i=1

∣W∣+ 1
P(wi∣w0…wi−1)

P(wi∣w0…wi−1)≈P (w i)
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Unigram Models Ignore Word Order!

● Ignoring context, probabilities are the same:

P
uni

(w=speech recognition system) =

    P(w=speech) * P(w=recognition) * P(w=system) * P(w=</s>) 

P
uni

(w=system recognition speech ) =

    P(w=speech) * P(w=recognition) * P(w=system) * P(w=</s>) 

=
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Unigram Models Ignore Agreement!

● Good sentences (words agree):

● Bad sentences (words don't agree)

P
uni

(w=i am) =

    P(w=i) * P(w=am) * P(w=</s>) 

P
uni

(w=i are) =

    P(w=i) * P(w=are) * P(w=</s>) 

P
uni

(w=we am) =

    P(w=we) * P(w=am) * P(w=</s>) 

P
uni

(w=we are) =

    P(w=we) * P(w=are) * P(w=</s>) 

But no penalty because probabilities are independent!
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Solution: Add More Context!

● Unigram model ignored context:

● Bigram model adds one word of context

● Trigram model adds two words of context

● Four-gram, five-gram, six-gram, etc...

P(wi∣w0…wi−1)≈P (w i)

P(wi∣w0…wi−1)≈P (w i∣wi−1)

P(wi∣w0…wi−1)≈P (w i∣wi−2w i−1)
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Maximum Likelihood Estimation
of n-gram Probabilities

● Calculate counts of n word and n-1 word strings

P(wi∣w i−n+ 1…wi−1)=
c (w i−n+ 1…wi)

c (wi−n+ 1…wi−1)

i live in osaka . </s>
i am a graduate student . </s>
my school is in nara . </s>

P(nara | in) = c(in nara)/c(in) = 1 / 2 = 0.5

P(osaka | in) = c(in osaka)/c(in) = 1 / 2 = 0.5
n=2 →
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Still Problems of Sparsity

● When n-gram frequency is 0, probability is 0

● Like unigram model, we can use linear interpolation

P(nara | in) = c(i nara)/c(in) = 1 / 2 = 0.5

P(osaka | in) = c(i osaka)/c(in) = 1 / 2 = 0.5

P(school | in) = c(in school)/c(in) = 0 / 2 = 0!!

P(wi∣w i−1)=λ2 PML (w i∣wi−1)+ (1−λ2)P(wi)

P(wi)=λ1 PML(wi)+ (1−λ1)
1
N

Bigram:

Unigram:
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Choosing Values of λ: Grid Search

● One method to choose λ
2
, λ

1
: try many values

λ2=0.95,λ1=0.95

Too many options
→ Choosing takes time!

Using same λ for all n-grams
→ There is a smarter way!

Problems:
λ2=0.95,λ1=0.90
λ2=0.95,λ1=0.85

λ2=0.95,λ1=0.05
λ2=0.90,λ1=0.95
λ2=0.90,λ1=0.90

λ2=0.05,λ1=0.05
λ2=0.05,λ1=0.10

…

…
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Context Dependent Smoothing

● Make the interpolation depend on the context 

High frequency word: “Tokyo”

c(Tokyo city) = 40
c(Tokyo is) = 35

c(Tokyo was) = 24
c(Tokyo tower) = 15
c(Tokyo port) = 10

…

Most 2-grams already exist
→ Large λ is better!

Low frequency word: “Tottori”

c(Tottori is) = 2
c(Tottori city) = 1
c(Tottori was) = 0

Many 2-grams will be missing
→ Small λ is better!

P(wi∣w i−1)=λw i−1
PML (w i∣wi−1)+ (1−λw i−1

)P(wi)
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Witten-Bell Smoothing

● One of the many ways to choose

● For example:

λw i−1

λw i−1
=1−

u(wi−1)

u(wi−1)+ c (wi−1)

u(wi−1) = number of unique words after w
i-1

c(Tottori is) = 2    c(Tottori city) = 1
c(Tottori) = 3       u(Tottori) = 2

λTottori=1−
2

2+ 3
=0.6

c(Tokyo city) = 40 c(Tokyo is) = 35 ...
c(Tokyo) = 270       u(Tokyo) = 30

λTokyo=1−
30

30+ 270
=0.9
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Programming Techniques
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Inserting into Arrays

● To calculate n-grams easily, you may want to:

● This can be done with:

my_words = [“this”, “is”, “a”, “pen”]

my_words = [“<s>”, “this”, “is”, “a”, “pen”, “</s>”]

my_words.append(“</s>”) # Add to the end

my_words.insert(0, “<s>”) # Add to the beginning
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Removing from Arrays

● Given an n-gram with w
i-n+1

 … w
i
, we may want the 

context w
i-n+1

 … w
i-1

● This can be done with:

my_ngram = “tokyo tower”
my_words = my_ngram.split(“ “)  # Change into [“tokyo”, “tower”]
my_words.pop() # Remove the last element (“tower”)
my_context = “ “.join(my_words) # Join the array back together
print my_context
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Exercise
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Exercise

● Write two programs
● train-bigram: Creates a bigram model
● test-bigram: Reads a bigram model and calculates 

entropy on the test set
● Test train-bigram on test/02-train-input.txt

● Train the model on data/wiki-en-train.word

● Calculate entropy on data/wiki-en-test.word (if linear 
interpolation, test different values of λ

2
)

● Challenge:
● Use Witten-Bell smoothing (Linear interpolation is easier)
● Create a program that works with any n (not just bi-gram)
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train-bigram (Linear Interpolation)
create map counts, context_counts
 

for each line in the training_file
  split line into an array of words
  append “</s>” to the end and “<s>” to the beginning of words
  for each i in 1 to length(words)-1  # Note: starting at 1, after <s>
    counts[“w

i-1
 w

i
”] += 1             # Add bigram and bigram context

    context_counts[“w
i-1

”] += 1   

    counts[“w
i
”] += 1                 # Add unigram and unigram context

    context_counts[“”] += 1
 

open the model_file for writing
for each ngram, count in counts
  split ngram into an array of words # “w

i-1
 w

i
” → {“w

i-1
”, “w

i
”}

  remove the last element of words #  {“w
i-1

”, “w
i
”} →  {“w

i-1
”}

  join words into context                   # {“w
i-1

”} → “w
i-1

”

  probability = counts[ngram]/context_counts[context]
  print ngram, probability to model_file
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test-bigram (Linear Interpolation)
λ

1
 = ???, λ

2
 = ???,

   
V = 1000000,  W = 0, H = 0

load model into probs

for each line in test_file
  split line into an array of words
  append “</s>” to the end and “<s>” to the beginning of words
  for each i in 1 to length(words)-1       # Note: starting at 1, after <s>
    P1 = λ

1 
probs[“w

i
”] + (1 – λ

1
) / V         # Smoothed unigram probability

    P2 = λ
2 
probs[“w

i-1
 w

i
”] + (1 – λ

2
) * P1 # Smoothed bigram probability

    H += -log
2
(P2)

    W += 1

print “entropy = ”+H/W
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Thank You!
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