
 1

NLP Programming Tutorial 7 – Neural Networks

NLP Programming Tutorial 7 -
Neural Networks

Graham Neubig
Nara Institute of Science and Technology (NAIST)

 2

NLP Programming Tutorial 7 – Neural Networks

Prediction Problems

Given x, predict y

 3

NLP Programming Tutorial 7 – Neural Networks

Example we will use:

● Given an introductory sentence from Wikipedia

● Predict whether the article is about a person

● This is binary classification (of course!)

Give
nGonso was a Sanron sect priest (754-827)

in the late Nara and early Heian periods.

Predic
t
Yes!

Shichikuzan Chigogataki Fudomyoo is
a historical site located at Magura, Maizuru
City, Kyoto Prefecture.

No!

 4

NLP Programming Tutorial 7 – Neural Networks

Linear Classifiers

y = sign (w⋅ϕ(x))

= sign (∑i=1

I
w i⋅ϕi(x))

● x: the input

● φ(x): vector of feature functions {φ
1
(x), φ

2
(x), …, φ

I
(x)}

● w: the weight vector {w
1
, w

2
, …, w

I
}

● y: the prediction, +1 if “yes”, -1 if “no”
● (sign(v) is +1 if v >= 0, -1 otherwise)

 5

NLP Programming Tutorial 7 – Neural Networks

Example Feature Functions:
Unigram Features

● Equal to “number of times a particular word appears”

x = A site , located in Maizuru , Kyoto
φ

unigram “A”
(x) = 1 φ

unigram “site”
(x) = 1 φ

unigram “,”
(x) = 2

φ
unigram “located”

(x) = 1 φ
unigram “in”

(x) = 1

φ
unigram “Maizuru”

(x) = 1 φ
unigram “Kyoto”

(x) = 1

φ
unigram “the”

(x) = 0 φ
unigram “temple”

(x) = 0

…
The rest
are all 0

● For convenience, we use feature names (φ
unigram “A”

)

instead of feature indexes (φ
1
)

 6

NLP Programming Tutorial 7 – Neural Networks

Calculating the Weighted Sum
x = A site , located in Maizuru , Kyoto

φ
unigram “A”

(x) = 1
φ

unigram “site”
(x) = 1

φ
unigram “,”

(x) = 2

φ
unigram “located”

(x) = 1

φ
unigram “in”

(x) = 1

φ
unigram “Maizuru”

(x) = 1

φ
unigram “Kyoto”

(x) = 1

w
unigram “a”

 = 0

w
unigram “site”

 = -3

w
unigram “located”

 = 0

w
unigram “Maizuru”

 = 0

w
unigram “,”

 = 0
w

unigram “in”
 = 0

w
unigram “Kyoto”

 = 0

φ
unigram “priest”

(x) = 0 w
unigram “priest”

 = 2

φ
unigram “black”

(x) = 0 w
unigram “black”

 = 0

* =

0

-3

…

0

0
0
0

0

0

0

…

+

+
+

+

+
+
+

+
+

=
-3 → No!

 7

NLP Programming Tutorial 7 – Neural Networks

The Perceptron

● Think of it as a “machine” to calculate a weighted sum

sign(∑i=1

I
w i⋅ϕi(x))

φ
“A”

= 1
φ

“site”
= 1

φ
“,”

= 2

φ
“located”

= 1

φ
“in”

= 1

φ
“Maizuru”

= 1

φ
“Kyoto”

 = 1

φ
“priest”

 = 0

φ
“black”

 = 0

0

-3
0
0
0
0
0
2
0

-1

 8

NLP Programming Tutorial 7 – Neural Networks

Perceptron in Numpy

 9

NLP Programming Tutorial 7 – Neural Networks

What is Numpy?

● A powerful computation library in Python

● Vector and matrix multiplication is easy

● A part of SciPy (a more extensive scientific computing
library)

 10

NLP Programming Tutorial 7 – Neural Networks

Example of Numpy (Vectors)

 11

NLP Programming Tutorial 7 – Neural Networks

Example of Numpy (Matrices)

 12

NLP Programming Tutorial 7 – Neural Networks

Perceptron Prediction

predict_one(w, phi)
 score = 0

for each name, value in phi # score = w*φ(x)
if name exists in w

score += value * w[name]
return (1 if score >= 0 else -1)

predict_one(w, phi)
 score = np.dot(w, phi)

return (1 if score[0] >= 0 else -1)

numpy

 13

NLP Programming Tutorial 7 – Neural Networks

Converting Words to IDs
● numpy uses vectors, so we want to convert names into

indices

ids = defaultdict(lambda: len(ids)) # A trick to convert to IDs

CREATE_FEATURES(x):
create list phi
split x into words
for word in words

phi[ids[“UNI:”+word]] += 1
return phi

 14

NLP Programming Tutorial 7 – Neural Networks

Initializing Vectors

● Create a vector as large as the number of features

● With zeros

w = np.zeros(len(ids))

● Or random between [-0.5,0.5]

w = np.random.rand(len(ids)) – 0.5

 15

NLP Programming Tutorial 7 – Neural Networks

Perceptron Training Pseudo-code
Count the features and initialize the weights
create map ids
for each labeled pair x, y in the data

create_features(x)
w = np.zeros(len(ids))

Perform training
for I iterations

for each labeled pair x, y in the data
phi = create_features(x)
y' = predict_one(w, phi)
if y' != y

update_weights(w, phi, y)

print w to weight_file
print ids to id_file

 16

NLP Programming Tutorial 7 – Neural Networks

 17

NLP Programming Tutorial 7 – Neural Networks

 18

NLP Programming Tutorial 7 – Neural Networks

Perceptron Prediction Code
read ids from id_file
read w from weights_file

for each example x in the data
phi = create_features(x)
y' = predict_one(w, phi)

 19

NLP Programming Tutorial 7 – Neural Networks

Neural Networks

 20

NLP Programming Tutorial 7 – Neural Networks

Problem: Only Linear Classification

● Cannot achieve high accuracy on non-linear functions

X

O

O

X

 21

NLP Programming Tutorial 7 – Neural Networks

Neural Networks

● Connect together multiple perceptrons

φ
“A”

= 1
φ

“site”
= 1

φ
“,”

= 2

φ
“located”

= 1

φ
“in”

= 1

φ
“Maizuru”

= 1

φ
“Kyoto”

 = 1

φ
“priest”

 = 0

φ
“black”

 = 0

-1

● Motivation: Can represent non-linear functions!

 22

NLP Programming Tutorial 7 – Neural Networks

Example
● Create two classifiers

X

O

O

X

φ
0
(x

2
) = {1, 1}φ

0
(x

1
) = {-1, 1}

φ
0
(x

4
) = {1, -1}φ

0
(x

3
) = {-1, -1}

step

step

φ
0
[0]

φ
0
[1]

1

1

1

-1

-1

-1

-1

φ
0
[0]

φ
0
[1]

φ
1
[0]

φ
0
[0]

φ
0
[1]

1

w
0,0

b
0,0

φ
1
[1]

w
0,1

b
0,1

 23

NLP Programming Tutorial 7 – Neural Networks

Example
● These classifiers map to a new space

X

O

O

X

φ
0
(x

2
) = {1, 1}φ

0
(x

1
) = {-1, 1}

φ
0
(x

4
) = {1, -1}φ

0
(x

3
) = {-1, -1}

1
1
-1

-1
-1
-1

φ
1

φ
2

φ
1
[1]

φ
1
[0]

φ
1
[0]

φ
1
[1]

φ
1
(x

1
) = {-1, -1}

X O
φ

1
(x

2
) = {1, -1}

O

φ
1
(x

3
) = {-1, 1}

φ
1
(x

4
) = {-1, -1}

 24

NLP Programming Tutorial 7 – Neural Networks

Example
● In the new space, the examples are linearly separable!

X

O

O

X

φ
0
(x

2
) = {1, 1}φ

0
(x

1
) = {-1, 1}

φ
0
(x

4
) = {1, -1}φ

0
(x

3
) = {-1, -1}

1
1
-1

-1
-1
-1

φ
0
[0]

φ
0
[1]

φ
1
[1]

φ
1
[0]

φ
1
[0]

φ
1
[1]

φ
1
(x

1
) = {-1, -1}

X O φ
1
(x

2
) = {1, -1}

Oφ
1
(x

3
) = {-1, 1}

φ
1
(x

4
) = {-1, -1}

1
1
1

φ
2
[0] = y

 25

NLP Programming Tutorial 7 – Neural Networks

Example

● The final net

tanh

tanh

φ
0
[0]

φ
0
[1]

1

φ
0
[0]

φ
0
[1]

1

1

1

-1

-1

-1

-1

1 1

1

1

tanh

φ
1
[0]

φ
1
[1]

φ
2
[0]

 26

NLP Programming Tutorial 7 – Neural Networks

Calculating a Net (with Vectors)

φ
0
[0]

φ
0
[1]

1

φ
0
[0]

φ
0
[1]

1

tanh

1

φ
0
 = np.array([1, -1])

1

1

w
0,0

 = np.array([1, 1])

-1

b
0,0

 = np.array([-1])

φ
2
[0]-1

-1

w
0,1

 = np.array([-1, -1])

-1

b
0,1

 = np.array([-1])

φ
1
[0] = np.tanh(w

0,0
φ

0
 + b

0,0
)[0]

tanh

φ
1
[1] = np.tanh(w

0,1
φ

0
 + b

0,1
)[0]

φ
2
[0] = np.tanh(w

1,0
φ

1
 + b

1,0
)[0]

Input

φ
2
 = np.zeros(1)

φ
1
[0]

φ
1
[1]

φ
1
 = np.zeros(2)

tanh
1

1

w
1,0

 = np.array([1, 1])

1
b

1,0
 = np.array([-1])

First Layer Output

Second Layer Output

 27

NLP Programming Tutorial 7 – Neural Networks

Calculating a Net (with Matrices)

φ
0
[0]

φ
0
[1]

1

φ
0
[0]

φ
0
[1]

1

tanh

1

φ
0
 = np.array([1, -1])

1

1

w
0
 = np.array([[1, 1], [-1,-1]])

-1

b
0
 = np.array([-1, -1])

φ
2
[0]-1

-1

-1

tanh

Input

φ
1
[0]

φ
1
[1]

φ
1
 = np.tanh(np.dot(w

0
, φ

0
) + b

0
)

tanh
1

1
w

1
 = np.array([[1, 1]])

1

b
1
 = np.array([-1])

First Layer Output

Second Layer Output

φ
2
 = np.tanh(np.dot(w

1
, φ

1
)

+ b

1
)

 28

NLP Programming Tutorial 7 – Neural Networks

Forward Propagation Code

forward_nn(network, φ
0
)

φ= [φ
0
] # Output of each layer

for each layer i in 0 .. len(network)-1:
w, b = network[i]

 # Calculate the value based on previous layer
φ[i] = np.tanh(np.dot(w, φ[i-1]) + b)

return φ # Return the values of all layers

 29

NLP Programming Tutorial 7 – Neural Networks

Calculating Error with tanh

● Error function: Squared error

● Gradient of the error:

● Update of weights:

● λ is the learning rate

err' = δ = y' - y

Correct Answer Net Output

w←w+ λ⋅δ⋅ϕ(x)

err = (y' – y)2 /2

 30

NLP Programming Tutorial 7 – Neural Networks

Problem:
Don't know error for hidden layers!

● The NN only gets the correct label for the final layer

φ
“A”

= 1
φ

“site”
= 1

φ
“,”

= 2

φ
“located”

= 1

φ
“in”

= 1

φ
“Maizuru”

= 1

φ
“Kyoto”

 = 1

φ
“priest”

 = 0

φ
“black”

 = 0

0

1

2

3
y' = 1
y = -1

y' = ?
y = 1

y' = ?
y = 1

y' = ?
y = 1

 31

NLP Programming Tutorial 7 – Neural Networks

-4 -3 -2 -1 0 1 2 3 4

y

Solution: Back Propagation
● Propagate the error backwards through the layers

● Also consider the gradient of the non-linear function

● Together:

δ = -0.9

δ = 0.2

δ = 0.4

j

w=0.1

w=1

w=-0.3

∑i
δ iw j ,i

d tanh (ϕ(x)∗w)=1−tanh (ϕ(x)∗w)2=1− y j
2

δ j=(1− y j
2)∑i

δiw j ,i

 32

NLP Programming Tutorial 7 – Neural Networks

Back Propagation

φ
0
[0]

φ
0
[1]

1

φ
0
[0]

φ
0
[1]

1

tanh

1

δ
2
 = np.array([y'-y])

1

1

-1

φ
2
[0]-1

-1

-1

tanh

φ
1
[0]

φ
1
[1]

tanh
1

1

1

Error of the Output Error of the First Layer
δ'

2
 = δ

2
 * (1-φ

2
2)

δ
1
 = np.dot(δ'

2
, w

1
)

Error of the 0th Layer
δ'

1
 = δ

1
 * (1-φ

1
2)

δ
0
 = np.dot(δ'

1
, w

0
)

 33

NLP Programming Tutorial 7 – Neural Networks

Back Propagation Code
backward_nn(net, φ, y')

J = len(net)
create array δ = [0, 0, …, np.array([y' – φ[J][0]])] # length J+1
create array δ' = [0, 0, …, 0]
for i in J-1 .. 0:

δ'[i+1] = δ[i+1] * (1 – φ[i+1]2)
w, b = net[i]
δ[i] = np.dot(δ'[i+1], w)

return δ'

 34

NLP Programming Tutorial 7 – Neural Networks

Updating Weights

● Finally, use the error to update weights

● Grad. of weight w is outer prod. of next δ' and prev φ

● Multiply by learning rate and update weights

● For the bias, input is 1, so simply δ'

-derr/dw
i
 = np.outer(δ'

i+1
, φ

i
)

w
i
 += λ * -derr/dw

i

-derr/db
i
 = δ'

i+1

b
i
 += λ * -derr/db

i

 35

NLP Programming Tutorial 7 – Neural Networks

Weight Update Code
update_weights(net, φ, δ', λ)

for i in 0 .. len(net)-1:
w, b = net[i]
w += λ * np.outer(δ'[i+1], φ[i])
b += λ * δ'[i+1]

 36

NLP Programming Tutorial 7 – Neural Networks

Overall View of Learning
Create features, initialize weights randomly
create map ids, array feat_lab
for each labeled pair x, y in the data

add (create_features(x), y) to feat_lab
initialize net randomly

Perform training
for I iterations

for each labeled pair φ
0
, y in the feat_lab

φ= forward_nn(net, φ
0
)

δ'= backward_nn(net, φ, y)
update_weights(net, φ, δ', λ)

print net to weight_file
print ids to id_file

 37

NLP Programming Tutorial 7 – Neural Networks

Tricks to Learning Neural Nets

 38

NLP Programming Tutorial 7 – Neural Networks

Stabilizing Training

● NNs have many parameters, objective is non-convex
→ training is less stable

● Initializing Weights:
● Randomly, e.g. uniform distribution between -0.1-0.1

● Learning Rate:
● Often start at 0.1
● Compare error with previous iteration, and reduce rate a

little if error has increased (*= 0.9 or *= 0.5)
● Hidden Layer Size:

● Usually just try several sizes and pick the best one

 39

NLP Programming Tutorial 7 – Neural Networks

Testing Neural Nets

● Easy Way: Print the error and make sure it is more or
less decreasing everty iteration

● Better Way: Use the finite differences method
Idea:

When updating weights, calculate grad. for w
i
: derr/dw

i

If we change that weight by a small amount (ω):

w
i
 = x

 ↓
err = y

then
w

i
 = x + ω

 ↓
err ≈ y + ω * derr/dw

i

In the finite differences method, we change w
i
 by ω and check

to make sure that the error changes by the expected amount
Details: http://cs231n.github.io/neural-networks-3/

If

 40

NLP Programming Tutorial 7 – Neural Networks

Exercise

 41

NLP Programming Tutorial 7 – Neural Networks

Exercise (1)
● Implement

● train-nn: A program to learn a NN
● test-nn: A program to test the learned NN

● Test
● Input: test/03-train-input.txt
● One iteration, one hidden layer, to hidden nodes
● Check the update by hand

 42

NLP Programming Tutorial 7 – Neural Networks

Exercise (2)

● Train data/titles-en-train.labeled

● Predict data/titles-en-test.word

● Measure Accuracy
● script/grade-prediction.py data-en/titles-en-test.labeled your_answer

● Compare
● Simple perceptron, SVM, or logistic regression
● Numbers of nodes, learning rates, initialization ranges

● Challenge

● Implement nets with multiple hidden layers
● Implement method to decrease learning rate when error

increases

 43

NLP Programming Tutorial 7 – Neural Networks

Thank You!

