|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

NLP Programming Tutorial 12 -
Dependency Parsing

Graham Neubig
Nara Institute of Science and Technology (NAIST)

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

Interpreting Language Is Hard!

| saw a girl with a telescope

* “Parsing” resolves structural ambiguity in a formal way

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

Two Types of Parsing

 Dependency: focuses on relations between words

NV

| saw a girl with a telescope

* Phrase structure: focuses on identifying phrases and
their recursive structure

S

VP
/\PP
NP NP fNP
PEQPV?D DJ N¢N |?| I?T NN

'
| saw a girl with a telescope

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

Dependencies Also Resolve Ambiguity

| saw a girl with a telescope | saw a girl with a telescope

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

Dependencies

 Typed: Label indicating relationship between words

prep
obj
dobj e
nsubj /" det det

| saw a girl with a telescope

* Untyped: Only which words depend

A VN

| saw a girl with a telescope ;

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

Dependency Parsing Methods
» Shift-reduce

* Predict from left-to-right
« Fast (linear), but slightly less accurate?
 MaltParser
e Spanning tree
« Calculate full tree at once
« Slightly more accurate, slower
« MSTParser, Eda (Japanese)
« Cascaded chunking

 Chunk words into phrases, find heads, delete non-
heads, repeat

 CaboCha (Japanese)

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

Maximum Spanning Tree

 Each dependency is an edge In a directed graph
* Assign each edge a score (with machine learning)
* Keep the tree with the highest score

o LN
N\ ONK Y

(Chu-Liu-Edmonds Algorithm)

7

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

Cascaded Chunking
* Works for Japanese, which is strictly head-final
* Divide sentence into chunks, head is rightmost word

Fh1d EimfE T & DO F = R

iy T O F = Rif-
¥ Pl
A E=RER Z
I T + = B
s s s
F HEiREE D
s
53 B 7
r < 5 B 4 T4 %
s » ¥/ s s ¥/
A EiRiE f EiREE

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

Shift-Reduce

Process words one-by-one left-to-right
Two data structures

* Queue: of unprocessed words
« Stack: of partially processed words

At each point choose

 shift: move one word from queue to stack
e reduce left: top word on stack is head of second word
* reduce right: second word on stack is head of top word

Learn how to choose each action with a classifier

NAIST

NLP Programming Tutorial 12 - Dependency Parsing

Shift Reduce Example

Stack

Queue

saw a qirl
P g

r left

shift

Stack Queue
| saw a girl
shift
I saw a girl
shift
| saw a girl
r left
I/saw a qgirl
shift
saw a girl

I/ »

saw girl

a

r right

Saw

girl

10

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

Classification for Shift-Reduce

e Glven a state:

Stack Queue
aw a girl

S
I/

 Which action do we choose?

shift ? rleft ? r right ?
saw a girl a girl saw girl
I/ saw/ I/ \a
I/

11

e Correct actions — correct tree

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

Classification for Shift-Reduce

 We have a weight vector for “shift” “reduce left”
“reduce right”
wow W
« Calculate feature functions from the queue and stack
¢(queue, stack)

* Multiply the feature functions to get scores
s, = w_* @(queue,stack)

* Take the highest score
S,>s &&s_>s - doshift

12

NAIST

entries and first queue entry

NLP Programming Tutorial 12 - Dependency Parsing

Features for Shift Reduce

» Features should generally cover at least the last stack

stack[-2] stack]-1] queuel0]
Word: saw a girl
POS: VBD DET NN
(pW-Zsaw,W-la = (pW-la,WOgirI -
(pW-ZsaW,P-lDET = (pW-la,PONN B
(pP-ZVBD,W-la = (pP-lDET,WOgirI B
(pP-ZVBD,P-lDET - P

P-1DETPONN

(-2 — second-to-last)
(-1 - last)
(0 — first)

13

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

Algorithm Definition

 The algorithm SHi1rFTREDUCE takes as input:
- Weights w_w w
- Aqueue=[(1, word , POS), (2, word , POS)), ...]
o starts with a stack holding the special ROOT symbol:

. stack =[(0, “ROOT”, “ROOT")]
* Processes and returns:

- heads =[-1, head , head,, ...]

14

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

Shift Reduce Algorithm

SHIFTREDUCE(queue)

make list heads
stack = [(0, “ROQOT", “ROOT")]
while |queue| > 0 or |stack]| > 1:

feats = MAKEFEATs(Stack, queue)

S, =W * feats # Score for “shift”
S =W * feats # Score for “reduce left”
s =w *feats # Score for “reduce right”

Ifs >=s and s_>=s and |queue| > 0:

stack.push(queue.popleft()) # Do the shift
elifs >=s: # Do the reduce left

heads| stack[-2].id | = stack[-1].id
stack.remove(-2)

else: # Do the reduce right
heads| stack[-1].id | = stack[-2].id 15
stack.remove(-1)

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

Training Shift-Reduce

» Can be trained using perceptron algorithm

* Do parsing, if correct answer corr different from
classifier answer ans, update weights

* e.qg.Ifans = SHIFT and corr = LEFT

w_-= @(queue,stack)

w, += @(queue,stack)

16

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

Keeping Track of the Correct Answer
(Initial Attempt)

* Assume we know correct head of each stack entry:

stack[-1].head == stackl-2].id (left is head of right)
- corr = RIGHT

stackl[-2].head == stackl-1].id (right is head of left)

— corr = LEFT
else
— corr = SHIFT

* Problem: too greedy for right-branching dependencies

stack[-2] stack[-1] queuel0]
Y go to school

go

school head: O T 1 2

17

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

Keeping Track of the Correct Answer
(Revised)

e Count the number of unprocessed children

» stack[-1].head == stack[-2].id (right is head of left)
stack[-1].unproc == (left no unprocessed children)
- corr = RIGHT

» stack[-2].head == stack[-1].id (left is head of right)

stackl[-2].unproc == (right no unprocessed children)
- corr = LEFT
* else
— corr = SHIFT
* Increase unproc when reading in the tree
When we reduce a head, decrement unproc 18

corr == RIGHT - stack[-1].unproc -=1

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

Shift Reduce Training Algorithm

SHIFTREDUCETRAIN(QuUeue)

make list heads
stack = [(0, “ROQOT", “ROOT")]
while |queue| > 0 or |stack]| > 1:

feats = MAKEFEATs(Stack, queue)

calculate ans # Same asS SHIFTREDUCE
calculate corr # Previous slides
If ans = corr:

w -= feats

ans

w += feats

corr

perform action according to corr

19

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

CoNLL File Format:

e Standard format for dependencies

* Tab-separated columns, sentences separated by
space

ID Word Base POS POS2 ? Head Type
mSs. mSs. NNP NNP 2 DEP
haag haag NNP NNP 3 NP-SBJ

0

3

3

plays plays VBZ VBZ ROOT
eliantt elianti NNP NNP NP-OBJ
DEP

O wWDNE

20

VAN NLP Programming Tutorial 12 - Dependency Parsing

Exercise

21

|N/A\|| S-“_ NLP Programming Tutorial 12 - Dependency Parsing

Exercise

* Write train-sr.py test-sr.py
e Train the program

e Input: data/mstparser-en-train.dep
* Run the program on actual data:
e data/mstparser-en-test.dep
 Measure: accuracy with
script/grade-dep.py
* Challenge:

 think of better features to use
* use a better classification algorithm than perceptron
* analyze the common mistakes .

VAN NLP Programming Tutorial 12 - Dependency Parsing

Thank You!

23

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

