
 1

NLP Programming Tutorial 12 – Dependency Parsing

NLP Programming Tutorial 12 -
Dependency Parsing

Graham Neubig
Nara Institute of Science and Technology (NAIST)

 2

NLP Programming Tutorial 12 – Dependency Parsing

Interpreting Language is Hard!

I saw a girl with a telescope

● “Parsing” resolves structural ambiguity in a formal way

 3

NLP Programming Tutorial 12 – Dependency Parsing

Two Types of Parsing
● Dependency: focuses on relations between words

● Phrase structure: focuses on identifying phrases and
their recursive structure

I saw a girl with a telescope

I saw a girl with a telescope
PRP VBD DT NN IN DT NN

NPNP

PP

VP

S

NP

 4

NLP Programming Tutorial 12 – Dependency Parsing

Dependencies Also Resolve Ambiguity

I saw a girl with a telescope I saw a girl with a telescope

 5

NLP Programming Tutorial 12 – Dependency Parsing

Dependencies
● Typed: Label indicating relationship between words

● Untyped: Only which words depend

I saw a girl with a telescope

nsubj

prep

dobj

det det

pobj

I saw a girl with a telescope

 6

NLP Programming Tutorial 12 – Dependency Parsing

Dependency Parsing Methods
● Shift-reduce

● Predict from left-to-right
● Fast (linear), but slightly less accurate?
● MaltParser

● Spanning tree
● Calculate full tree at once
● Slightly more accurate, slower
● MSTParser, Eda (Japanese)

● Cascaded chunking
● Chunk words into phrases, find heads, delete non-

heads, repeat
● CaboCha (Japanese)

 7

NLP Programming Tutorial 12 – Dependency Parsing

Maximum Spanning Tree

● Each dependency is an edge in a directed graph

● Assign each edge a score (with machine learning)

● Keep the tree with the highest score

girl

saw

I

a

girl

saw

I

a

Graph Scored Graph Dependency Tree

6
-1

4
2

7
5-2

1
girl

saw

I

a

6 4

7

(Chu-Liu-Edmonds Algorithm)

 8

NLP Programming Tutorial 12 – Dependency Parsing

Cascaded Chunking
● Works for Japanese, which is strictly head-final

● Divide sentence into chunks, head is rightmost word

私 は 望遠鏡 で 女 の 子 を 見た

私

は

望遠鏡

で

女

の 子 を 見た

私

は

望遠鏡

で

女

の

子 を 見た

私

は

望遠鏡

で

女
の
子
を 見た

私

は

望遠鏡

で

女
の
子
を

見た

 9

NLP Programming Tutorial 12 – Dependency Parsing

Shift-Reduce
● Process words one-by-one left-to-right

● Two data structures
● Queue: of unprocessed words
● Stack: of partially processed words

● At each point choose
● shift: move one word from queue to stack
● reduce left: top word on stack is head of second word
● reduce right: second word on stack is head of top word

● Learn how to choose each action with a classifier

 10

NLP Programming Tutorial 12 – Dependency Parsing

Shift Reduce Example

I saw a girl

QueueStack

shift

saw a girlI

shift

a girlI saw

r left

a girlsaw

I

girlsaw

I

shift

a

shift

girlsaw

I

a

r left

QueueStack

girlsaw

I a

r right

girl

saw

I

a

 11

NLP Programming Tutorial 12 – Dependency Parsing

Classification for Shift-Reduce

● Given a state:

● Which action do we choose?

● Correct actions → correct tree

girlsaw

I

a

shift

QueueStack

?

girlsaw

I

a

r left ?

girl

saw

I

a

r right ?

girlsaw

I a

 12

NLP Programming Tutorial 12 – Dependency Parsing

Classification for Shift-Reduce

● We have a weight vector for “shift” “reduce left”
“reduce right”

w
s
 w

l
 w

r

● Calculate feature functions from the queue and stack
φ(queue, stack)

● Multiply the feature functions to get scores
s

s
 = w

s
 * φ(queue,stack)

● Take the highest score
s

s
 > s

l
 && s

s
 > s

r
 → do shift

 13

NLP Programming Tutorial 12 – Dependency Parsing

Features for Shift Reduce
● Features should generally cover at least the last stack

entries and first queue entry

girlsaw a
queue[0]stack[-2] stack[-1]

Word:

POS: VBD DET NN

(-2 → second-to-last)
(-1 → last)
(0 → first)

φ
W-2saw,W-1a

 = 1

φ
W-2saw,P-1DET

 = 1

φ
P-2VBD,W-1a

 = 1

φ
P-2VBD,P-1DET

 = 1

φ
W-1a,W0girl

 = 1

φ
P-1DET,W0girl

 = 1

φ
W-1a,P0NN

 = 1

φ
P-1DET,P0NN

 = 1

 14

NLP Programming Tutorial 12 – Dependency Parsing

Algorithm Definition

● The algorithm ShiftReduce takes as input:

● Weights w
s
 w

l
 w

r

● A queue=[(1, word
1
, POS

1
), (2, word

2
, POS

2
), …]

● starts with a stack holding the special ROOT symbol:
● stack = [(0, “ROOT”, “ROOT”)]

● processes and returns:

● heads = [-1, head
1
, head

2
, …]

 15

NLP Programming Tutorial 12 – Dependency Parsing

Shift Reduce Algorithm
ShiftReduce(queue)

make list heads
stack = [(0, “ROOT”, “ROOT”)]
while |queue| > 0 or |stack| > 1:

feats = MakeFeats(stack, queue)
s

s
 = w

s
 * feats # Score for “shift”

s
l
 = w

l
 * feats # Score for “reduce left”

s
r
 = w

r
 * feats # Score for “reduce right”

 if s
s
 >= s

l
 and s

s
 >= s

r
 and |queue| > 0:

stack.push(queue.popleft()) # Do the shift
elif s

l
 >= s

r
: # Do the reduce left

heads[stack[-2].id] = stack[-1].id
stack.remove(-2)

else: # Do the reduce right
heads[stack[-1].id] = stack[-2].id
stack.remove(-1)

 16

NLP Programming Tutorial 12 – Dependency Parsing

Training Shift-Reduce

● Can be trained using perceptron algorithm

● Do parsing, if correct answer corr different from
classifier answer ans, update weights

● e.g. if ans = SHIFT and corr = LEFT

w
s
 -= φ(queue,stack)

w
l
 += φ(queue,stack)

 17

NLP Programming Tutorial 12 – Dependency Parsing

Keeping Track of the Correct Answer
(Initial Attempt)

● Assume we know correct head of each stack entry:

stack[-1].head == stack[-2].id (left is head of right)
→ corr = RIGHT

stack[-2].head == stack[-1].id (right is head of left)
→ corr = LEFT

else
→ corr = SHIFT

● Problem: too greedy for right-branching dependencies

go to school
queue[0]stack[-2] stack[-1]

id:
head:

1
0

2
1

3
2

→ RIGHT

go

to

school

 18

NLP Programming Tutorial 12 – Dependency Parsing

Keeping Track of the Correct Answer
(Revised)

● Count the number of unprocessed children

● stack[-1].head == stack[-2].id (right is head of left)
stack[-1].unproc == 0 (left no unprocessed children)
→ corr = RIGHT

● stack[-2].head == stack[-1].id (left is head of right)
stack[-2].unproc == 0 (right no unprocessed children)
→ corr = LEFT

● else
→ corr = SHIFT

● Increase unproc when reading in the tree
When we reduce a head, decrement unproc
corr == RIGHT → stack[-1].unproc -= 1

 19

NLP Programming Tutorial 12 – Dependency Parsing

Shift Reduce Training Algorithm
ShiftReduceTrain(queue)

make list heads
stack = [(0, “ROOT”, “ROOT”)]
while |queue| > 0 or |stack| > 1:

feats = MakeFeats(stack, queue)
calculate ans # Same as ShiftReduce
calculate corr # Previous slides
if ans != corr:

w
ans

 -= feats

w
corr

 += feats

perform action according to corr

 20

NLP Programming Tutorial 12 – Dependency Parsing

CoNLL File Format:

● Standard format for dependencies

● Tab-separated columns, sentences separated by
space

ID Word Base POS POS2 ? Head Type
1 ms. ms. NNP NNP _ 2 DEP
2 haag haag NNP NNP _ 3 NP-SBJ
3 plays plays VBZ VBZ _ 0 ROOT
4 elianti elianti NNP NNP _ 3 NP-OBJ
5 _ 3 DEP

 21

NLP Programming Tutorial 12 – Dependency Parsing

Exercise

 22

NLP Programming Tutorial 12 – Dependency Parsing

Exercise
● Write train-sr.py test-sr.py

● Train the program

● Input: data/mstparser­en­train.dep
● Run the program on actual data:

● data/mstparser­en­test.dep

● Measure: accuracy with
script/grade­dep.py

● Challenge:

● think of better features to use
● use a better classification algorithm than perceptron
● analyze the common mistakes

 23

NLP Programming Tutorial 12 – Dependency Parsing

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

